• Title/Summary/Keyword: Hot Place

Search Result 175, Processing Time 0.026 seconds

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

AN INTRODUCTION TO SEMICONDUCTOR INITIATION OF ELECTROEXPLOSIVE DEVICES

  • Willis K. E.;Whang, D. S.;Chang, S. T.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.21-26
    • /
    • 1994
  • Conventional electroexplosive devices (EED) commonly use a very small metal bridgewire to ignite explosive materials i.e. pyrotechnics, primary and secondary explosives. The use of semiconductor devices to replace “hot-wire” resistance heating elements in automotive safety systems pyrotechnic devices has been under development for several years. In a typical 1 amp/1 watt electroexplosive devices, ignition takes place a few milliseconds after a current pulse of at least 25 mJ is applied to the bridgewire. In contrast, as for a SCB devices, ignition takes place in a few tens of microseconds and only require approximately one-tenth the input energy of a conventional electroexplosive devices. Typically, when SCB device is driven by a short (20 $\mu\textrm{s}$), low energy pulse (less than 5 mJ), the SCB produces a hot plasma that ignites explosive materials. The advantages and disadvantages of this technology are strongly dependent upon the particular technology selected. To date, three distinct technologies have evolved, each of which utilizes a hot, silicon plasma as the pyrotechnic initiation element. These technologies are 1.) Heavily doped silicon as the resistive heating initiation mechanism, 2.) Tungsten enhanced silicon which utilizes a chemically vapor deposited layer of tungsten as the initiation element, and 3.) a junction diode, fabricated with standard CMOS processes, which creates the initial thermal environment by avalanche breakdown of the diode. This paper describes the three technologies, discusses the advantages and disadvantages of each as they apply to electroexplosive devises, and recommends a methodology for selection of the best device for a particular system environment. The important parameters in this analysis are: All-Fire energy, All-Fire voltage, response time, ease of integration with other semiconductor devices, cost (overall system cost), and reliability. The potential for significant cost savings by integrating several safety functions into the initiator makes this technology worthy of attention by the safety system designer.

  • PDF

The Sanitary Management Procedures of Foodservice in Elementary Schools in Pusan (부산지역 학교급식의 위생관리 수행 평가)

  • 류은순;정동관
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1398-1404
    • /
    • 1999
  • The purpose of this study was to investigate the sanitary management procedures of foodservice in elementary schools in Pusan area. The questionnaire which were administered to 189 dietitians was used in this study as a survey method. The results were as follows. Mean total length of employment for dietitians at school foodservice was 3.7 year. The mean serving scale was 1,052 meals. Meals were served at classroom 63.5%, lunchroom 23.8%, and classroom+lunchroom 12.7% of the schools. The mean time span required of meal delivery was 31.5min at the classroom serving place. Regarding total mean score of sanitary management procedures, time temperature was 3.48/5.00, personal sanitation 4.20/5.00, equipments and facilities sanitation 3.92/5.00. The mean score of the pre preparation was 3.91/5.00 for time temperature management procedure, those of food purchasing and receiving, food storage, food production, meal. assembly.trasnportation service, and hot.cold holding were 3.83/5.00, 3.82/5.00, 3.71/5.00, 3.25/5.00, 2.30/5.00 respectively. The higher age group(31

  • PDF

The Change of Geographical Names' Territory and Representation of Place Identity with Place Names : A Case Study of Chungju Geographical Names (지명을 통한 장소정체성 재현과 지명영역의 변화 : 충주지역 지명을 사례로)

  • Lee, Young-Hee
    • Journal of the Korean association of regional geographers
    • /
    • v.16 no.2
    • /
    • pp.110-122
    • /
    • 2010
  • This article is to study the characteristics of Chungju geographical names using the concepts which are the place identity, the politics of scale, and the competition of place names' territory for the diverse study methods of geographical names. According to this results, the new name of 'Suanbo-Myun' revealed the place identity, because it has not only the property of 'Suanbo hot spring' but also the three conditions called 'the numerical solitary', 'the qualitative identity', and 'the self-identity' which are the conditions for the place identity. In relation to the politics of scale through place names, the example of scaling up is 'Yian-Myun' which is former name of 'Chungju city Yiru-Myun', and the cases of scaling down are 'the up and down of Chungju Up Ho', the reductional change from 'Chungju-Gun' to 'Chungju-Myun' and the change of Chinese name of the 'Wolak Mountain'. Lastly, the examples of place names' territory change are two types. One is 'Chungju Yongdu-Dong' and 'Yiru-Myune Geumgok-Ri' for the cases that the place name and its territory were changed. The other is 'Dalchon river' that the place name's territory was only changed. In conclusion, this study suggested that place names are useful in order to represent and construct the place identity.

  • PDF

A Wear-leveling Scheme for NAND Flash Memory based on Update Patterns of Data (데이터 갱신 패턴 기반의 낸드 플래시 메모리의 블록 사용 균일화 기법)

  • Shin, Hyo-Joung;Choi, Don-Jung;Kim, Bo-Keong;Yoon, Tae-Bok;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.761-767
    • /
    • 2010
  • In the case of NAND flash memory, a whole block needs to be erased for update operations because update-in- place operations are not supported in NAND flash memory. Blocks of NAND flash memory have the limited erasure cycles, so frequently updated data (hot data) easily makes blocks worn out. As the result, the capacity of NAND flash memory will be reduced by hot data. In this paper, we propose a wear-leveling algorithm by discriminating hot and cold data based on the update patterns of data. When we applied this scheme to NAND flash memory, we confirmed that the erase counts of blocks became more uniform by mapping hot data to a block with a low erase count and cold data to block with a high erase count.

Some Consideration on Structure of Carbon fibers during Hot Stretching (고온 연신 열처리 탄소섬유의 구조 고찰)

  • Kim, Hong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.30-34
    • /
    • 1999
  • A polyacrylonitrile(PAN)-based carbon fiber tow was heat-treated by directly passing electric current through the tow. The effects of the stretching stress applied during high temperature heat-treatment of PAN-based carbon fibers were investigated by measuring the electric resistance changes taking place during the internal resistance heating. The structure parameters characterizing the stacks of carbon layer, such as interlayer spacing, sizes and orientation of the carbon fibers heat-treated with hot-stretching were evaluated as a function of surface temperature of tow during heat treatment in the range of $1000~2400^{\circ}C$. Though the layer extent in the fiber axis direction depends strongly on the electric resistance, the changes in a crystallite parameter is independent of the longitudinal strain.

  • PDF

Fabrication of a Micro Cooler using Thermoelectric Thin Film (열전박막을 이용한 마이크로 냉각소자 제작)

  • Han, S.W.;Choi, H.J.;Kim, B.I.;Kim, B.M.;Kim, D.H.;Kim, O.J.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1459-1462
    • /
    • 2007
  • In general a thermoelectric cooler (TEC) consists of a series of P type and N type thermoelectric materials sandwiched between two wafers. When a DC current passes through these materials, three different effects take place; Peltier effect, Joule heating effect and heat transfer by conduction due to temperature difference between hot and cold plates. In this study we have developed a micro TEC using $Bi_2Te_3$ (N type) and $Bi_{0.5}Sb_{1.5}Te_3$ (P type) thin films. In order to improve that performance of a micro TEC, we made 10 um height TE legs using special PR only for lift-off. We measured COP (coefficient of performance) and temperature difference between hot and cold connectors with current.

  • PDF

Reaction of Gas-Phase Bromine Atom with Chemisorbed Hydrogen Atoms on a Silicon(100)-(2${\times}$1) Surface

  • Lee, Jong Baek;Jang, Gyeong Sun;Mun, Gyeong Hwan;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.889-896
    • /
    • 2001
  • The reaction of gas-phase atomic bromine with highly covered chemisorbed hydrogen atoms on a silicon surface is studied by use of the classical trajectory approach. It is found that the major reaction is the formation of HBr(g), and it proceeds th rough two modes, that is, direct Eley-Rideal and hot-atom mechanism. The HBr formation reaction takes place on a picosecond time scale with most of the reaction exothermicity depositing in the product vibration and translation. The adsorption of Br(g) on the surface is the second most efficient reaction pathway. The total reaction cross sections are $2.53{\AA}2$ for the HBr formation and $2.32{\AA}2$ for the adsorption of Br(g) at gas temperature 1500 K and surface temperature 300 K.

Finite Element Analysis of Heat Transfer Effects on Asphalt Pavement Heated by Pre-Heater Unit Used in Hot In-Place Recycling (유한요소해석을 통한 현장 가열 재활용 시공 장비의 가열판 용량에 따른 아스팔트 포장의 열전도성 평가)

  • Lee, Kang Hun;Lim, Jin Sun;Jeong, Kyu Dong;Im, Jeong Hyuk;Kwon, Soo Ahn;Kim, Yong Joo
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • PURPOSES: The national highways and expressways in Korea constitute a total length of 17,951 km. Of this total length of pavement, the asphalt pavement has significantly deteriorated, having been in service for over 10 years. Currently, hot in-place recycling (HIR) is used as the rehabilitation method for the distressed asphalt pavement. The deteriorated pavement becomes over-heated, however, owing to uncontrolled heating capacity during the pre-heating process of HIR in the field. METHODS: In order to determine the appropriate heating method and capacity of the pre-heater at the HIR process, the heating temperature of asphalt pavement is numerically simulated with the finite element software ABAQUS. Furthermore, the heating transfer effects are simulated in order to determine the inner temperature as a function of the heating system (IR and wire). This temperature is ascertained at $300^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, and $800^{\circ}C$ from a slab asphalt specimen prepared in the laboratory. The inner temperature of this specimen is measured at the surface and five different depths (1 cm, 2 cm, 3 cm, 4 cm, and 5 cm) by using a data logger. RESULTS: The numerical simulation results of the asphalt pavement heating temperature indicate that this temperature is extremely sensitive to increases in the heating temperature. Moreover, after 10 min of heating, the pavement temperature is 36%~38% and 8%~10% of the target temperature at depths of 25 mm and 50 mm, respectively, from the surface. Therefore, in order to achieve the target temperature at a depth of 50 mm in the slab asphalt specimen, greater heating is required of the IR system compared to that of the gas. CONCLUSIONS : Numerical simulation, via the finite element method, can be readily used to analyze the appropriate heating method and theoretical basis of the HIR method. The IR system would provide the best heating method and capacity of HIR heating processes in the field.

The High Temperature Deformation Behavior of Ductile Cast Iron (구상 흑연 주철의 고온 변형 거동)

  • Yoo, Wee-Do;Na, Young-Sang;Lee, Jong-Hoon
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.11-16
    • /
    • 2002
  • Hot deformation behavior of GCD-50 cast iron has been investigated by employing the compressive test. Phenomenological deformation behaviors, which were modeled based on the dynamic materials model and the kinetic model, have been correlated with the microstructural change taken place during compression. Microstructural investigation revealed that the adiabatic shear band caused by the locallized deformation was taken place in low temperature and high strain rate. On the other hand, the wavy and curved grain boundaries, which repersent the occurrence of dynamic microstructure change such as dynamic recovery and dynamic recrystallization, were observed in high temperature and low strain rate. Deformation model based on hyperbolic sine law has also been suggested.