• Title/Summary/Keyword: Hot Forging Process

Search Result 222, Processing Time 0.02 seconds

The Process Design for Hot Forging of Bearing Hub Considering Flow Line (단류선을 고려한 베어링 허브의 열간 단조 공정설계)

  • Byun H. S.;No G. Y.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.428-431
    • /
    • 2005
  • This paper describes the process design for hot forging of bearing hub. Forging processes of bearing hub are simulated using the rigid-plastic finite element method. In the process called closed die forging without flash, the design of blocker geometry is of critical importance. Forging processes designs are take advantage of computer aided Process planning and experts. But that is difficult to predict metal flow line. So the preform is designed by the expert, and modified through predict metal flow line by CAE. This paper is to approach preform design considered defect such as metal flow and unfitting etc. at the finisher process.

  • PDF

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

A Study on the Development of Al Alloy for the Vehicle Connecting Rod Using Hot Forging (열간단조공법을 이용한 컨로드용 Al 합금의 개발에 관한 연구)

  • Kim, S.H.;Hwang, T.M.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Alumium alloys hot forging process are gaining increased acceptance in the automotive and electronic industries and hot forging is one of the most efficient manufacturing method for mass product parts. It has been investigated the microstructures and mechanical properties of Al-11.7Si-0.5Mg (KNT40-T6)alloy fabricated by hot forging process for development of connecting rod in this study. The microstructure of hot forged specimen was composed of eutectic structure of alumimum solid solution and $Mg_2Si$ precipitates. The tensile strength of solutionized Al-11.7Si-0.5Mg alloy was 217MPa. This alloy showed a good corrosion resistance using electrochemical polarization test.

  • PDF

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

Computer-Aided Process Planning and Die Design for Hot Forging of H-Shaped Plane Strain Components (평면변형 H-형재의 열간단조, 공정설계 및 금형설계)

  • Park, J.C.;Kim, B.M.;Kim, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 1994
  • This research describes some developments of computer-aided process planning and die design for hot forging products of H-shaped plane strain produced by the press. The system is composed of three main modules(process planning module, die design module and simulation module) which are used independently or in all. Systm capabilities include as follows: 1. In die design module, using the results of process planning module, the shape and size of bolcker and finish die in each operation are determined and the ouput id generated in graphic form for manufacturing drawing. 3. In simulation module, the flow pattern of workpiece and the load/stroke curve are approximately predicted. Design rules for process planning and die design are extracted from plasticity theories, handbooks, relevant references and empirical know-how of field experts in hot forging companies. The developed system provides poweful capabilities for process planning and die design of hot forging products.

  • PDF

Development of Integrated Computer-Aided Process Planning System for Press Working Products (프레스 제품의 가공을 위한 통합적 CAPP 시스템 개발)

  • Choi, Jung-Il;Kim, Chang-Bong;Kim, Chul;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.59-70
    • /
    • 1999
  • This paper deals with automated computer-aided process planning by which designers can determine operation sequences even if they have little experience in the design of press working products. The computer-aided process planning in hot forging, deep drawing and blanking requires many kinds of technical and empirical skills based on investigation and collection of the knowledge of their processes. An approach to the CAPP system is based on the knowledge-based rules and the process knowledge base consisting of process planning rules is built. The methodology adopted to develop the system is elaborated in this paper. This system has been written in AutoLISP on the AutoCAD with a personal computer and provides powerful capabilities for process planning of hot forging, cold forging, deep drawing and blanking products.

  • PDF

Hot Forging Analysis of Rotor Grip with Titanium Alloy for Unmanned Helicopter (무인헬기용 티타늄 합금 로터 그립의 열간성형해석)

  • Lee, Seong-Chul;Kong, Jae-Hyun;Hur, Kwan-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-103
    • /
    • 2011
  • Rotor grip is used as a component of rotor system in unmanned helicopter. Instead of usual machining, hot forging process has been considered to improve its proof stress against repeated loading conditions and crash in the farm-field. Die design and forming analysis have been performed according to the conditions such as billet volume, flash, cavity filling, and the distribution of damage during the forming by using FE analysis. In the results of analysis, the possibility of structural failure in the model has not been found because its maximum effective stress is much lower than yield strength of the titanium alloy. In the forging die design, flash has been allowed because of low production in the industrial field. Preform design was studied by using FE-analysis, and its optimal dimension was obtained in the hot forging of rotor grip with titanium alloy.

Finite Element Simulation for Design of Compound Forging Process for a Hollow Flanged Spindle (플랜지형 중공 스핀들의 복합단조 공정설계를 위한 유한요소 시뮬레이션)

  • Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.69-75
    • /
    • 2010
  • A hollow flanged spindle is generally used for the assembly of the driving shaft in some vehicles. This part has conventionally been manufactured by both hot forging and machining process, in which case a circular billet is hot-forged into a flanged spindle blank and then its central part is machined for hollow. Therefore, the development of a new forming technology without further machining processes has strongly been in demand. In this study, a new compound forging process of the hollow flanged spindle was proposed through the finite element simulation. By the proposed compound forging process, both extruding of the spindle body part and piercing for the hollow inside it can be performed at the same time. Metal flow patterns, forging defects and forging forces were investigated through the finite element simulation results.

Computer Simulation of Microstructure Evolution during Hot Forging of Waspaloy (미세조직 변화를 고려한 열간 단조 공정에서의 유한요소해석)

  • Kang, G.P.;Lee, K.H.;Lee, S.U.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.53-56
    • /
    • 2007
  • Computer simulation of microstructure evolution during hot forging process is of great interest in recent years. Recrystallization model and grain growth model which use a phenomenological approach were summarized. For the waspaloy, upsetting process and cogging process were simulated using $DEFORM^{TM}$ and the change in grain size were investigated in each deformation procedure.

  • PDF

Process Design for the Hot Forging of Asymmetric Rail to Symmetric Rail

  • Cho, Hae-Yong;Kim, Yong-Yun;Lee, Ki-Joung;Lee, Sung-Ho;Oh, Byung-Ki;Nam, Gi-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1559-1564
    • /
    • 2004
  • The process design of hot forging, asymmetric to symmetric rib-web shaped steel, which is used for the turnout of express rails has been studied. Owing to the great difference in shape between the initial billet and the final forged product, it is impossible to hot forge the rail in a single stage operation. The numerical simulation for hot forging of asymmetric shape to symmetric shape was carried out by using commercial FEM code, DEFORMTM-2D. For comparison with the simulation results, a experiment of flow analysis using plasticine was also carried out. The results of the flow experiment showed good agreement with those of the simulation.