• 제목/요약/키워드: Hot Dip Galvanizing

검색결과 62건 처리시간 0.026초

Surface Oxidation of High Strength Automotive Steels during Continuous Annealing, and the Influence of Trace Elements of P,B, and Sb

  • Sohn, Il-Ryoung;Park, Joong-Chul;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제9권6호
    • /
    • pp.259-264
    • /
    • 2010
  • In continuous hot dip galvanizing process, oxide formation on steel surface has an influence on Zn wetting. High strength automotive steel contains high amount of Si and Mn, where Si-Mn composite oxides such as $Mn_2SiO_4$ or $MnSiO_3$ covers the surface after annealing. Zn wetting depends on how the aluminothermia reaction can reduce the Mn-Si composite oxides and then form inhibition layer such as $Fe_2Al_5$ on the steel surface. The outward diffusion of metallic ions such as $Mn^{2+}$, $Si^{2+}$ in the steel matrix is very important factor for the formation of the surface oxides on the steel surface. The surface state and grain boundaries provide an important role for the diffusion and the surface oxide reactions. Some elements such as P, Sb, and B have a strong affinity for the interface precipitation, and it influence the diffusivity of metallic ions on grain boundaries. B oxide forms very rapildly on the steel surface during the annealing, and this promote complex oxides with $SiO_2$ or MnO. P has inter-reacted with other elements on the grain boundaries and influence the diffusion through on them. Small addition of Sb could suppress the decarburization from steel surface and retards the formation of internal and external selective oxides on the steel surface. Interface control by the trace elements such as Sb could be available to improve the Zn wettability during the hot dip galvanizing.

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • 제16권2호
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석 (Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets)

  • 이재원;김성진
    • Corrosion Science and Technology
    • /
    • 제21권3호
    • /
    • pp.221-229
    • /
    • 2022
  • To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

$CaF_2$ 기전력법에 의한 용융아연 중 알루미늄 농도의 측정 (Measurement of Al Concentration in Liquid Zinc by E.M.F Method with $CaF_2$)

  • 박진성;김항수;정우광;;김종상
    • 전기화학회지
    • /
    • 제3권4호
    • /
    • pp.204-210
    • /
    • 2000
  • 용융아연 도금 강판 제조시 용융아연 도금 bath중의 알루미늄 농도를 조절하는 것은 매우 중요하다 본 연구의 목적은 용융아연 도금욕 중 알루미늄 농도를 신속하게 측정할 수 있는 센서 개발을 위한 기초 data를 제공하는 것이다. $CaF_2$고체전해질과 3가지 종류의 참조극을 사용하여 $460^{\circ}C\~500^{\circ}C$의 순수한 용융아연 bath에서 불소포텐샬을 측정하였다. 용융 아연 중 알루미늄의 농도를 측정하기 위하여 다음과 같은 불소 이온 농담전지 센서를 구성하였다. $$(-)W|Zn-Al,\;AlF_3|CaF_2|Bi,BiF_3|W(+)$$ 알루미늄의 농도가 $0.984wt\%$이하인 Zn-Al bath의 온도를 $460\pm10^{\circ}C$로 유지하고 상기의 알루미늄 농도 센서를 이용하여 기전력을 측정하였다. 측정된 기전력 값으로부터 최소 자승 회귀분석법을 이용하여, 다음과 같은 알루미늄 농도와 기전력과의 관계식을 얻었다. $$E/mV=56.795log[\%Al]+1881.7\;R=0.9704$$,$$0.026wt\%{\leq}[\%Al]{\leq}0.984wt\%$$

Analysis of the Inhibition Layer of Galvanized Dual-Phase Steels

  • Wang, K.K.;Wang, H.-P.;Chang, L.;Gan, D.;Chen, T.-R.;Chen, H.-B.
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2012
  • The formation of the Fe-Al inhibition layer in hot-dip galvanizing is a confusing issue for a long time. This study presents a characterization result on the inhibition layer formed on C-Mn-Cr and C-Mn-Si dual-phase steels after a short time galvanizing. The samples were annealed at $800^{\circ}C$ for 60 s in $N_{2}$-10% $H_{2}$ atmosphere with a dew point of $-30^{\circ}C$, and were then galvanized in a bath containing 0.2 %Al. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) was employed for characterization. The TEM electron diffraction shows that only $Fe_{2}Al_{5}$ intermetallic phase was formed. No orientation relationship between the $Fe_{2}Al_{5}$ phase and the steel substrate could be identified. Two peaks of Al 2p photoelectrons, one from metallic aluminum and the other from $Al^{3+}$ ions, were detected in the inhibition layer, indicating that the layer is in fact a mixture of $Fe_{2}Al_{5}$ and $Al_{2}O_{3}$. TEM/EDS analysis verifies the existence of $Al_{2}O_{3}$ in the boundaries of $Fe_{2}Al_{5}$ grains. The nucleation of $Fe_{2}Al_{5}$ and the reduction of the surface oxide probably proceeded concurrently on galvanizing, and the residual oxides prohibited the heteroepitaxial growth of $Fe_{2}Al_{5}$.

Development of Sleeve Parts for Continuous Hot Zinc Plating Roll Applied to Wear-Resistant Alloy Cast Steel

  • Park, Dong-Hwan;Hong, Jin-Tae;Kwon, Hyuk-Hong
    • 한국생산제조학회지
    • /
    • 제26권4호
    • /
    • pp.357-364
    • /
    • 2017
  • Metal casting is a process in which molten metal or liquid metal is poured into a mold made of sand, metal, or ceramic. The mold contains a cavity of the desired shape to form geometrically complex parts. The casting process is used to create complex shapes that are difficult to make using conventional manufacturing practices. For the optimal casting process design of sleeve parts, various analyses were performed in this study using commercial finite element analysis software. The simulation was focused on the behaviors of molten metal during the mold filling and solidification stages for the precision and sand casting products. This study developed high-life sleeve parts for the sink roll of continuous hot-dip galvanizing equipment by applying a wear-resistant alloy casting process.

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2000년도 춘계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

알루미늄과 마그네슘 첨가가 용융아연 도금강판 도금층의 미세조직과 경도에 미치는 영향 (Effects of Al and Mg on the Microstructure and Hardness of the Coating Layer of Hot-dip Galvanized Steel Sheet)

  • 성윤제;김동규;서준기;한경현;홍범기;김강민;허성욱;박성현;임재택;손승배;이석재;정재길
    • 열처리공학회지
    • /
    • 제36권4호
    • /
    • pp.198-205
    • /
    • 2023
  • We investigated the effects of Al and Mg on the microstructure and hardness of the coating layer of galvanized steel sheets, by thermodynamic calculations, X-ray diffraction, scanning electron microscopy, and Vickers hardness tests of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers. Regardless of the alloy composition of the galvanizing bath, a Fe-Al layer was observed between the coating layer and steel sheet. The Zn-0.2Al coating layer consists of major h.c.p. Zn phase and minor f.c.c. Al phase. The fraction of f.c.c. Al phase (containing a significant amount of Zn) of the coating layer increases with increasing the chemical composition of Al of the galvanizing bath. The h.c.p. MgZn2 phase was formed in the Al/Mg-containing Zn-6Al-2Mg and Zn-10Al-5Mg coating layers, forming Zn-Al-MgZn2 eutectic microstructure. The primary MgZn2 phase was additionally formed in the Zn-10Al-5Mg coating layers containing high concentrations of Al and Mg. The Vickers hardness values of Zn-0.2Al, Zn-6Al-2Mg, and Zn-10Al-5Mg coating layers were 59.1 ± 1.2 HV, 161.2 ± 5.7 HV, and 215.5 ± 40.3 HV, respectively. The addition of Al and Mg increased the hardness of the coating layer by increasing the fraction of the Al phase (containing Zn) and MgZn2 intermetallic compound, which were harder than the Zn phase.

Improvement of Zinc Coating Weight Control for Transition of Target Change

  • Chen, Chien-Ming;Lin, Jeng-Hwa;Hsu, Tse-Wei;Lin, Rui-Rong
    • Corrosion Science and Technology
    • /
    • 제9권3호
    • /
    • pp.105-108
    • /
    • 2010
  • The product specification of the Continuous Hot Dip Galvanizing Line (CGL) changes and varies constantly with different customers' requirements, especially in the zinc coating weight which is from 30 to 150 g/$m^2$ on each side. Since the coating weight of zinc changes often, it is very important to reduce time spent in the transfer of target values changed for low production cost and yield loss. The No.2 CGL in China Steel Corporation (CSC) has improved the control of the air knife which is designed by Siemens VAI. CSC proposed an experiment design which is an $L_9(3^4)$ orthogonal array to find the relations between zinc coating weight and the process parameters, such as the line speed, air pressure, gap of air knife and air knife position. A non-linear regression formula was derived from the experimental results and applied in the mathematical model. A new air knife feedforward control system, which is coupled with the regression formula, the air knife control system and the process computer, is implemented into the line. The practical plant operation results have been presented to show the transfer time is obviously shortened while zinc coating weight target changing and the product rejected ratio caused by zinc coating weight out of specification is significantly reduced from 0.5% to 0.15 %.

인장강도 1200 MPa 급 자동차 서브 프레임의 합금성분 최적화 및 열변형 거동 연구 (A Study on Dimensional Change after Heat Treatment and Optimal Chemical Composition of Steels with 1200 MPa Tensile Strength for Automotive Subframe)

  • 정우창
    • 열처리공학회지
    • /
    • 제33권3호
    • /
    • pp.107-116
    • /
    • 2020
  • Four air hardening steels with carbon, silicon, manganese, chromium, and molybdenum variations have been used in this study to find out the optimal chemical compositions of steels with over 1200 MPa tensile strength for automotive subframe. The dimensional changes after heat treatment were determined for two automotive parts with open and closed cross sections using 3D scanner. When four steels were austenitized at 900℃ for 30 seconds, cooled at 3℃/s, reheated to 450℃ for 10 seconds followed by air cooling to simulate hot-dip galvanizing treatment showed ultra high tensile strength over 1200 MPa. Rear floor cross member with open cross section revealed much bigger dimensional changes than subframe with closed cross section after heat treatment at 900℃ for 20 minutes followed by air cooling.