• Title/Summary/Keyword: Hot Corrosion

Search Result 287, Processing Time 0.024 seconds

Microstructure and Corrosion Characteristics of Al-Si Diffusion Coated Ni Base Super alloy (Al-Si확산코팅에 따른 Ni기 초합금의 미세조직과 부식특성)

  • 안종천;김택수;윤동주;이경구
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.100-108
    • /
    • 1999
  • The microstructure and corrosion properties of Al-Si diffusion coated PWA1426 alloy have been investigated. Experimental variables are included temperatures of heat-treatment and coating thickness. The microstructure of coated layer and corrosion properties were analysed by SEM, EDS and hot corrosion test. Two major processes have been found to contribute to microstructural changes in the coating. These are, firstly, the transformation of the NiAl to other $Ni_2Al_3$-based phase and secondly, the precipitation of Cr containing phases. Specimens heat treated at $1080^{\circ}C$ showed superior corrosion resistance to heat treated at $880^{\circ}C$. These increase in life was attributed to the transformation of NiAl and increased coating thickness of PWA1426 alloy.

  • PDF

Corrosion Characteristics of Aluminum Conductors Steel Rainforced wires (강심알루미늄연선의 부식특성)

  • 김용기;장세기;이덕희
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.981-986
    • /
    • 2002
  • ACSR of the catenary wires is corrosion degradation progressed by the effect of atmospheric pollution. ACSR which consists of galvanized steel stranded aluminum. The inside of Steel Reinforced is hot-dipped zinc coating steel wire and it takes charge of tension. If ACSR is exposed in atmosphere, the galvanic corrosion is occurred because it is contacted with aluminum. It is occurred the chemical reaction rapidly so that the local a defect is also occurred. If the catenary wires are exposed in atmosphere of pollution conditions, it may cause to reduce the mechanical strength by corrosion degradation and may cause to damage the wires by micro cracks. Accordingly, this study presents the effects of mechanical properties through the corrosion of ACSR.

  • PDF

Wear Mechanism of MgO-C Refractory with Thermite Reaction Products of MgO and Al (MgO와 Al의 테르밋 반응생성물이 첨가된 MgO-C계 내화재료의 용손 기구)

  • 최태현;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.832-838
    • /
    • 1996
  • Thermite reaction products of MgO and Al were added to MgO-C refractory to improve the properties of corrosion against the attack of slag, oxidation and mechanical spalling. Corrosion rate of MgO-C-MgAl2O4 spinel refractory at the ratio of 3.3(CaO/SiO2) slag was smaller than that of MgO-C and MgO-C-Al refractory. The excellent corrosion resistance of the MgO-C-MgAl2O4 spinel refractory against the slag attack was appeared by Al and MgAl2O4 spinel with high melting point and corrosion resistance and the high thermal conductivity and low thermal expansion of AIN. Hot M.O.R at 140$0^{\circ}C$ and the resistance of oxidation weight loss at 90$0^{\circ}C$ were 210kg/cm2 and -12% respectively.

  • PDF

Corrosion of Fe-17%Cr Steels in (Na2SO4+NaCl) Salts at 800 and 900℃

  • Lee, Dong Bok;Xiao, Xiao
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.4
    • /
    • pp.214-217
    • /
    • 2018
  • Stainless steel grade 430 with a composition of Fe-17%Cr was corroded in $Na_2SO_4$ and ($Na_2SO_4+NaCl$) salts at 800 and at $900^{\circ}C$ for up to 20 h. It corroded mainly to $Cr_2O_3$, along with a small amount of $Fe_2O_3$ and $Fe_3O_4$. The formed oxide scales were neither dense nor compact enough owing to their ensuing dissolution into the salt during corrosion, which facilitated internal corrosion. Corrosion occurred faster at $900^{\circ}C$ than $800^{\circ}C$. NaCl in $Na_2SO_4$ aggravated the scale adherence.

Study on the Cathodic Protection Characteristics of Hot Water Boiler by Mg-Alloy Galvanic Anode(1) (Mg 합금 유전양극에 의한 온수Boiler의 음극방식특성에 관한 연구(1))

  • 임우조;윤병두
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.147-152
    • /
    • 2001
  • Corrosion damage of boiler, factory equipment and so forth occur quickly due to using of the polluted water, resulting in increasing leak accident. Especially, working life of hot water boiler using the polluted water becomes more short, and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection methode is suitable for the application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of hot water boiler. In tap water solution, the measurement of cathodic protection potential according to the time elapsed is carried out, and behavior of cathodic polarization with current change is investigated. The main results obtained are as follows. In hot water boiler shell, the open circuit potential of base metal become less noble than that of weld Bone, and the current density of base metal becomes low than that of weld zone. The further distance from Mg-alloy galvanic anode, the higher cathodic protection potential of hot water boiler appears. And protective potential becomes high according to pass cathodic protection time and after 6∼10 days become stable.

  • PDF

An Electrochemical Evaluation on the Corrosion Resistance of a Al Alloy (주조용 Al합금의 내식성에 관한 전기화학적 평가)

  • Youn Dae-Hyun;Lee Myung-Hoon;Kim Ki-Joon;Moon Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.495-501
    • /
    • 2005
  • Al is a active metal that owes its resistance to a thin, protective, barrier oxide surface layer, which is stable in air and neutral aqueous solution. Thus Al alloys are widely used in architectural trim. cold & hot-water storage vessels and piping. However Al and most of its alloy may corrode with some forms such as pitting corrosion, intergranular corrosion and galvanic corrosion in the case of exposure to various industrial and marine atmosphere. Therefore a correct evaluation of corrosion resistance for their Al and Al alloys may be more important in a economical point of view. In this study. a relative evaluation of corrosion resistance for three kinds of Al alloys such as ALDC2, ALDC3, and ALDC8 series was carried out with electrochemical method. There is a tendency that corrosion potential is shifted to positive or negative direction by alloying components regardless of corrosion resistance. Moreover the data of corrosion properties obtained from cathodic Polarization curve, cyclic voltammogram and AC. DC impedance respectively showed a good correspondence each other against the corrosion resistance but variation of corrosion potential. passivity current density of anodic polarization curve and corrosion current density by Tafel extrapolation and Stern-Geary method didn't correspond with not only each other but also considerably the data of corrosion properties discussed above. Therefore it is suggested that an optimum electrochemical evaluation for corrosion resistance of Al alloy is to calculate the diffusion limiting current density of cathodic polarization curve, impedance of AC or DC and polarization resistance of cyclic voltammogram.

Change of Mechanical Properties of Clad Steel According to the Welding Process Design (용접 공정 디자인에 따른 클래드강의 기계적 성질 변화)

  • Lee, Jung-Hyun;Park, Jaw-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.372-379
    • /
    • 2013
  • In this study, we investigated the traits of the clad metals used in hot-rolled clad steel plates. We examined the sensitization and mechanical properties of STS 316 steel plate and carbon steel (A516) under the specific circumstances of post heat treatment and whether a weld was multilayered and thick or repeated because of repairs. The test conditions were as follows. The clad steel plates were butt-welded using FCAW/SAW, and the heat treatment was conducted at $625^{\circ}C$, for 80, 160, 320, 640, or 1280 min. The change in the corrosion resistance was evaluated in these specimens. In the case of the carbon steel (A516), as the heat treatment time increased, the annealing effect caused the tensile strength to decrease. The micro- hardness gradually increased and then decreased after 640 min. The elongation and contraction of the area increased gradually. An oxalic acid etch test and EPR test on STS316, a clad metal, showed a STEP structure and no sensitization. From the test results for the multi-layered and repair welds, it could be concluded that there is no effect on the corrosion resistance of clad metals. In summary, the purpose of this study was to suggest some considerations when developing on-site techniques and evaluate the sensitization of stainless steels.

Effect of Coating Layer on Electrode Life for Resistance Spot Welding of Al-Coated Hpf and Zn-Coated Trip Steels (Al 도금 HPF 강판과 전기아연도금 TRIP 강판의 저항 점 용접 시 연속타점 전극의 수명에 미치는 도금층의 영향)

  • Son, Jong Woo;Seo, Jong-Dock;Kim, Dong Cheol;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • The resistance spot welding of high strength steel degrades the weldability because of its high strength with rich chemical composition and coating layer to protect from corrosion. During the each resistance welding process the electrodes tip reacts with coating layer, then subsequently deteriorates and shorten electrode life. In this study, the Al-coated HPF (Hot Press Forming) steels and Zn-coated TRIP steels were used to investigate the electrode life for resistance spot welding. Experimental results show that the reactivity of Al-coating on HPF steels to electrode tip surface behaviors different from the conventional Zn-coated high strength steels. The electrode tip diameter and nugget size in electrode life test of Al-coated HPF steels are observed to be constant with respect to weld numbers. For Al-coated HPF steels, the hard aluminum oxide layer being formed during high temperature heat treatment process reduces reactivity with copper electrode during the resistance welding process. Eventually, the electrode life in resistance spot welding of Al-coated HPF steels has the advantage over the galvanized steel sheets.

Phase-Field Modelling of Zinc Dendrite Growth in ZnAlMg Coatings

  • Mikel Bengoetxea Aristondo;Kais Ammar;Samuel Forest;Vincent Maurel;Houssem Eddine Chaieb;Jean-Michel Mataigne
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.93-103
    • /
    • 2024
  • In the present work, a phase-field model for dendritic solidification is applied to hot-dip ZnAlMg coatings to elucidate the morphology of zinc dendrites and the solute segregation leading to the formation of eutectics. These aspects define the microstructure that conditions the corrosion resistance and the mechanical behaviour of the coating. Along with modelling phase transformation and solute diffusion, the implemented model is partially coupled with the tracking of crystal orientation in solid grains, thus allowing the effects of surface tension anisotropy to be considered in multi-dendrite simulations. For this purpose, the composition of a hot-dip ZnAlMg coating is assimilated to a dilute pseudo-binary system. 1D and 2D simulations of isothermal solidification are performed in a finite element solver by introducing nuclei as initial conditions. The results are qualitatively consistent with existing analytical solutions for growth velocity and concentration profiles, but the spatial domain of the simulations is limited by the required mesh refinement.

Studies on the Utilization of Domestic Shale contained Chiastolite for Ceramics (국산 공정석함유 혈암의 요업적 개발에 관한 연구)

  • 정영기;오재현;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.3
    • /
    • pp.3-7
    • /
    • 1975
  • The usefulness of the domestic shale contained chiastolite as additive were investigated. Crude mixed minerals were separated into shale and chiastolite. Refractory body added simple component or multiple components as additives was obtained when firing at 125$0^{\circ}C$ for each body. Compressive strength, refractories, apparent sp. gr., water absorption, corrosion test by slag, hot linear expansion were measured and X-ray diffraction analysis was observed. As the result of study, refractory body contained separated minerals as additives showed slightly increasing in refractoriness, lowering in sintering effect, the excellent effect for corrosion resistance by acidic slag. With more containing separated minerals, hot linear expansion for the body can be decreased.

  • PDF