• 제목/요약/키워드: Host-pathogen

검색결과 417건 처리시간 0.024초

MicroRNAs in Human Diseases: From Lung, Liver and Kidney Diseases to Infectious Disease, Sickle Cell Disease and Endometrium Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • 제11권6호
    • /
    • pp.309-323
    • /
    • 2011
  • MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs of about 22 nucleotides that have recently emerged as important regulators of gene expression at the posttranscriptional level. Recent studies provided clear evidence that microRNAs are abundant in the lung, liver and kidney and modulate a diverse spectrum of their functions. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as infectious diseases, sickle cell disease and endometrium diseases as well as lung, liver and kidney diseases. As a consequence of extensive participation of miRNAs in normal functions, alteration and/or abnormalities in miRNAs should have importance in human diseases. Beside their important roles in patterning and development, miRNAs also orchestrated responses to pathogen infections. Particularly, emerging evidence indicates that viruses use their own miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the host cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here I briefly summarize the newly discovered roles of miRNAs in various human diseases including infectious diseases, sickle cell disease and enodmetrium diseases as well as lung, liver and kidney diseases.

식물 병원균 Drechslera siccans로 부터 분리한 세스터테르펜류 Siccanol의 구조 (Siccanol: Sesterterpene Isolated from Pathogenic Fungus Drechslera Siccans)

  • 임치환;;;;성낙도
    • Applied Biological Chemistry
    • /
    • 제39권3호
    • /
    • pp.241-244
    • /
    • 1996
  • Drechslera siccans의 배양 추출물로부터 이탈리안 라이그라스 (Lolium multiflorum Lam.) 뿌리의 생육저해 활성을 나타내는 물질을 분리정제한 다음에 2차원 NMR을 포함한 각종 기기분석을 이용하여 구조를 결정하였다. Siccanol(1)이라고 명명한 이 화합물의 분자식은 $C_{25}H_{38}_{4}$이었으며 100ppm에서 숙주 식물중의 하나인 이탈리안 라이그라스에 대하여 100%의 저해 활성을 나타내었다.

  • PDF

Inhibitory Activity of Sedum middendorffianum-Derived 4-Hydroxybenzoic Acid and Vanillic Acid on the Type III Secretion System of Pseudomonas syringae pv. tomato DC3000

  • Kang, Ji Eun;Jeon, Byeong Jun;Park, Min Young;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.608-617
    • /
    • 2020
  • The type III secretion system (T3SS) is a key virulence determinant in the infection process of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Pathogen constructs a type III apparatus to translocate effector proteins into host cells, which have various roles in pathogenesis. 4-Hydroxybenozic acid and vanillic acid were identified from root extract of Sedum middendorffianum to have inhibitory effect on promoter activity of hrpA gene encoding the structural protein of the T3SS apparatus. The phenolic acids at 2.5 mM significantly suppressed the expression of hopP1, hrpA, and hrpL in the hrp/hrc gene cluster without growth retardation of Pst DC3000. Auto-agglutination of Pst DC3000 cells, which is induced by T3SS, was impaired by the treatment of 4-hydroxybenzoic acid and vanillic acid. Additionally, 2.5 mM of each two phenolic acids attenuated disease symptoms including chlorosis surrounding bacterial specks on tomato leaves. Our results suggest that 4-hydroxybenzoic acid and vanillic acid are potential anti-virulence agents suppressing T3SS of Pst DC3000 for the control of bacterial diseases.

Serovars distribution and antimicrobial resistance patterns of Salmonella spp. isolated from the swine farms and slaughter houses

  • Jung, Hokyoung;Lee, Sungseok;Kim, Chiyoung;Sunwoo, Sunyoung;Lyoo, Young S.
    • 대한수의학회지
    • /
    • 제51권2호
    • /
    • pp.123-128
    • /
    • 2011
  • Salmonella spp. is an important pathogen to both public and swine industry. The aim of this study was to investigate the distribution of Salmonella serovar and antibiotics susceptibility of the isolates from Korean swine producing systems. A total of 63 (5.28%) Salmonella spp. was isolated from 1,194 samples (977 fecal materials and 67 organ samples). The predominant Salmonella (S.) enterica serotype and serovar was group B (69.8%) and S. Typhimurium (47.6%), S. Derby (20.6%) and S. Heidelberg (1.6%). But S. Cholerasuis which is characterized host specific by septicemia and enteritis to pigs was not isolated. Antimicrobial susceptibility of the isolates varies as follows: Norfloxacine (75%), Ciprofloxacin (67.5%), Amikacin (60%), Colistin (60%), Enrofloxacin (55%). All of isolates were resistant to Erythromycin, Penicillin, Tetracycline and Lincomycin. The results of this study provided useful information regarding antimicrobial susceptibility and resistance patterns to treat salmonellosis and to prevent emergence of multidrug resistance Salmonella.

Citrobacter freundii 분리주를 감염시키는 용균 박테리오파지 CF1의 유전체 염기서열 초안 (Draft genome sequence of lytic bacteriophage CF1 infecting Citrobacter freundii isolates)

  • 김영주;고세영;연영은;임재원;한범구;김현일;안정근;김동혁
    • 미생물학회지
    • /
    • 제54권1호
    • /
    • pp.79-80
    • /
    • 2018
  • 본 연구에서는 돼지 축사 근처 하수 오물에서 분리된 그람 음성균이자 항생제 내성을 쉽게 획득하여 병원성을 띄는 균주인 Citrobacter freundii를 host로 하는 박테리오파지의 유전체 분석을 수행하였다. 본 박테리오파지는 G + C 비율이 42.65%이며, 50,339 bp로 구성된 유전체 DNA를 지니고 있었다. 이러한 유전체 DNA에서 89개의 단백질 코딩 유전자가 확인 되었으며, 이 중 55개의 유전자는 BLASTP 분석으로부터 기능을 가지고 있다고 추정되었다. 또한 RNA는 확인되지 않았다.

Anticandidal Effect of Polygonum cuspidatum on C. albicans Biofilm Formation

  • Lee, Heung-Shick;Kim, Youn-Hee
    • 동의생리병리학회지
    • /
    • 제26권1호
    • /
    • pp.74-80
    • /
    • 2012
  • Candida albicans is a common opportunistic pathogen and is frequently associated with biofilm formation occurring on the surfaces of host tissues and medical devices. On account of the distinct resistance of C. albicans biofilms to the conventional antifungal agents, new strategies are required to cope with these infections. The root of Polygonum cuspidatum has been used for medicinal purposes in East Asia. The aim of this study was to assess the anticandidal potential of the P. cuspidatum ethanol extract by evaluating biofilm formation, integrity of the cell membranes of C. albicans and adhesion of C. albicans cells to polystyrene surfaces. The growth and development of the biofilm was assessed using an XTT reduction assay, and the extract (0.39 mg/ml) significantly reduced ($41.1{\pm}17.8%$) biofilm formation of 11 C. albicans strains. The extract damaged the cell membranes of C. albicans and remarkably inhibited cell adhesion to polystyrene surfaces. The plant extract displayed fungistatic activity without significant hemolytic activity. Based on the results of this study, the P. cuspidatum extract has promising potential for use in treating biofilm-associated Candida infection.

미생물 위해성 평가의 용량-반응 모델에 대한 고찰 (A Review of Dose-response Models in Microbial Risk Assessment)

  • 최은영;박경진
    • 한국식품위생안전성학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2004
  • 미생물 위해성 평가의 용량-반응 모델은 생물학적 모델과 경험적 모델로 나눌 수 있다. 생물학적 모델은 미생물의 분포형태, 미생물에 대한 숙주의 감수성, 감염을 일으킬 수 있는 미생물 수에 대한 가정을 바탕으로 성립된 모델로서, 대표적으로 Exponential model과 $\beta$-Poisson model이 있다. 경험적 모델은 주로 화학물질의 독성을 나타내는데 이용되어 온 모델로, Weibull-Gamma model등이 있다. 여러 용량-반응 모델 중에서 실험 데이터에 적합한 모델을 걱정하는 데에는 deviance function(Y)을 이용하며, 현재 일부 식중독균에 대해서는 사람과 실험동물에서의 용량-반응 모델이 연구되어 있다.

2018년 경남 양식어류에서 검출된 병원체 모니터링 (Monitoring of Pathogens Detected in Cultured Fishes of Gyeongnam in 2018)

  • 강가현;차승주
    • 한국수산과학회지
    • /
    • 제52권5호
    • /
    • pp.539-546
    • /
    • 2019
  • The major cultured marine fishes in sea off the coast Gyeongsangnam-do Province, South Korea, were assessed and included 9.3% rockfish Sebastes schlegelii, 7.8% red seabream Pagrus major, and 2.1% rock bream Oplegnathus fasciatus. The number of insurance payments related to disease mortality in cultured fish in 2017 was fourfold that in 2016. Economic loss in aquaculture due to disease in cultured fish is high and represents an important inhibitory factor affecting marine fishery productivity. In 2018, diseases led to severe production losses in several aquaculture species: 40.0% in rockfish, 11.4% in olive flounder Paralichthys olivaceus, 10.0% in filefish Thamnaconus modestus, and 9.3% in red seabream. Fish-parasitic pathogens such as Microcotyle sebastis, Alella spp., and Dactylogyrus spp. enter mainly via the gills and skin surface. Among bacterial pathogens, Vibrio species were most common, with Vibrio harveyi being the dominant species causing infections in these fishes. The bacterium Lactococcus garvieae is thought to exhibit host specificity in fish. The fish species in the present study exhibited a higher tendency for infection by heterologous pathogens than by a single pathogen; therefore, it is necessary to devise new strategies for treating diseases in cultured fish.

Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry

  • Yang, Ji-Su;Lee, Hae-Won;Song, Hyeyeon;Ha, Ji-Hyoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.70-78
    • /
    • 2021
  • Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.

Acyl Homoserine Lactone in Interspecies Bacterial Signaling

  • Kanojiya, Poonam;Banerji, Rajashri;Saroj, Sunil D.
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.1-14
    • /
    • 2022
  • Bacteria communicate with each other through an intricate communication mechanism known as quorum sensing (QS). QS regulates different behavioral aspects in bacteria, such as biofilm formation, sporulation, virulence gene expression, antibiotic production, and bioluminescence. Several different chemical signals and signal detection systems play vital roles in promoting highly efficient intra- and interspecies communication. Gram-negative bacteria coordinate gene regulation through the production of acyl homoserine lactones (AHLs). Gram-positive bacteria do not code for AHL production, while some gram-negative bacteria have an incomplete AHL-QS system. Despite this fact, these microbes can detect AHLs owing to the presence of LuxR solo receptors. Various studies have reported the role of AHLs in interspecies signaling. Moreover, as bacteria live in a polymicrobial community, the production of extracellular compounds to compete for resources is imperative. Thus, AHL-mediated signaling and inhibition are considered to affect virulence in bacteria. In the current review, we focus on the synthesis and regulation mechanisms of AHLs and highlight their role in interspecies bacterial signaling. Exploring interspecies bacterial signaling will further help us understand host-pathogen interactions, thereby contributing to the development of therapeutic strategies intended to target chronic polymicrobial infections.