• Title/Summary/Keyword: Host-pathogen

Search Result 417, Processing Time 0.025 seconds

LIR motifs and the membrane-targeting domain are complementary in the function of RavZ

  • Park, Sang-Won;Jun, Yong-Woo;Jeon, Pureum;Lee, You-Kyung;Park, Ju-Hui;Lee, Seung-Hwan;Lee, Jin-A;Jang, Deok-Jin
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.700-705
    • /
    • 2019
  • The bacterial effector protein RavZ is secreted by the intracellular pathogen Legionella pneumophila and inhibits host autophagy through an irreversible deconjugation of mammalian ATG8 (mATG8) proteins from autophagosome membranes. However, the roles of the LC3 interacting region (LIR) motifs in RavZ function remain unclear. In this study, we show that a membrane-targeting (MT) domain or the LIR motifs of RavZ play major or minor roles in RavZ function. A RavZ mutant that does not bind to mATG8 delipidated all forms of mATG8-phosphatidylethanolamine (PE) as efficiently as did wild-type RavZ. However, a RavZ mutant with a deletion of the MT domain selectively delipidated mATG8-PE less efficiently than did wild-type RavZ. Taken together, our results suggest that the effects of LIR motifs and the MT domain on RavZ activity are complementary and work through independent pathways.

Clinical and microbiologic effects of the subantimicrobial dose of doxycycline on the chronic periodontitis (저용량 독시싸이클린 투여가 만성 치주염에 미치는 임상적 미생물학적 효과)

  • Kim, Sang-Jun;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • Purpose: Tetracycline and its chemically modified non-antibacterial analogues can inhibit certain host-derived tissue destructive collagenases such as matrix metalloproteinases. The purpose of this study was to evaluate clinical and microbiologic effects of the subantimicrobial dose of doxycycline(SDD) in conjunction with scaling and root planing. Materials and methods: A total of 30 patients with chronic periodontitis who were going to receive scaling and root planing were randomly allocated to receive either a doxycycline hyclate for 3 months or nothing. Clinical probing depth, clinical attachment level, gingival recession, and bleeding on probing were measured by one periodontist. After a periodontal examination, microbial samples were collected using sterile paper points. The effect of SDD in conjunction with scaling and root planing on alterations of the periodontal pathogens (Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Porphyromonas gingivalis) were also assessed using l6S rRNA polymerase chain reaction. Results: During the treatment period, clinical parameters for both treatment group and control group were improved. After 3 months, reductions in probing depth and gains in clinical attachment level were significantly greater for the SDD group than control group. Microbial analysis showed that there was no alteration of the periodontal pathogens and no difference between the groups. Conclusion: This study suggested that the subantimicrobial dose of doxycycline as an adjunct therapy with scaling and root planing might be effective and safe in the management of chronic periodontitis.

Detection of Marine Birnavirus(MABV) from Marine Fish in the Southern Coast of Korea (남해안 자연산 어류에서 Marine birnavirus(MABV)의 검출)

  • Yun, Hyun-Mi;Kim, Seok-Ryel;Lee, Wol-La;Jung, Sung-Ju;Oh, Myung-Joo
    • Journal of Aquaculture
    • /
    • v.21 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Marine birnavirus(MABV) are well known fish pathogens in Asian countries such as Korea, Japan, and China. Prevalence of viral disease, geological distribution and host or reservoir of viruses were investigated from wild marine fishes in southern coast of Korea in 2003 and 2005. RT-PCR results showed that MABV were detected in 17 fishes(10.6%) from 160 fishes. Comparative analysis of the nucleotide sequences and the deduced amino acids of MABV genome from wild fishes were similar to reference strains of MABV and distinguished with IPNV strains.

Occurrence of Gray Mold of Stachys sieboldii Caused by Botrytis cinerea (Botrytis cinerea에 의한 초석잠 잿빛곰팡이병 발생)

  • Kwon, Jin-Hyeuk;Jin, Young-Min;Bae, Sung-Mun;Jeong, Eun-Ho;Ryu, Jae-San;Kim, Min-Keun
    • The Korean Journal of Mycology
    • /
    • v.34 no.2
    • /
    • pp.122-124
    • /
    • 2006
  • In March of 2005, gray mold disease caused by Botrytis cinereu on Stachys sieboldii Miq. was occurred in the mud cellar storage of Gyeongsangnam-do Agricultural Research and Extension Services, Korea. The symptoms started with water-soaked and rotten in the tubers. The conidia were one celled and mostly ellipsoid or ovoid in shape and light gray in color. The conidia were $5{\sim}16{\times}4{\sim}12{\mu}m$ in size and the conidiophores were $14{\sim}30{\mu}m$ in length. The pathogen formed conidia and sclerotia abundantly on PDA. The optimal temperature for mycelial growth and sclelotia formation was $20^{\circ}C$. On the basis of symptom, mycological characteristics and pathogenicity test on host plants, the fungus was identified as Botrytis cinerea Persoon: Fries. This is the first report on gray mold of S. sieboldii caused by B. cinerea in Korea.

Molecular Markers for Detecting a Wide Range of Trichoderma spp. that Might Potentially Cause Green Mold in Pleurotus eryngii

  • Lee, Song Hee;Jung, Hwa Jin;Hong, Seung-Beom;Choi, Jong In;Ryu, Jae-San
    • Mycobiology
    • /
    • v.48 no.4
    • /
    • pp.313-320
    • /
    • 2020
  • In Pleurotus sp., green mold, which is considered a major epidemic, is caused by several Trichoderma species. To develop a rapid molecular marker specific for Trichoderma spp. that potentially cause green mold, eleven Trichoderma species were collected from mushroom farms and the Korean Agricultural Culture Collection (KACC). A dominant fungal isolate from a green mold-infected substrate was identified as Trichoderma pleuroticola based on the sequences of its internal transcribed spacer (ITS) and translation elongation factor 1-α (tef1) genes. In artificial inoculation tests, all Trichoderma spp., including T. atroviride, T. cf. virens, T. citrinoviride, T. harzianum, T. koningii, T. longibrachiatum, T. pleurotum, and T. pleuroticola, showed pathogenicity to some extent, and the observed symptoms were soaked mycelia with a red-brown pigment and retarded mycelium regeneration. A molecular marker was developed for the rapid detection of wide range of Trichoderma spp. based on the DNA sequence alignment of the ITS1 and ITS2 regions of Trichoderma spp. The developed primer set detected only Trichoderma spp., and no cross reactivity with edible mushrooms was observed. The detection limits for the PCR assay of T. harzianum (KACC40558), T. pleurotum (KACC44537), and T. pleuroticola (CAF-TP3) were found to be 500, 50, and 5 fg, respectively, and the detection limit for the pathogen-to-host ratio was approximately 1:10,000 (wt/wt).

Anthracnose of Spiraea prunifolia Caused by Colletotrichum gloeosporioides in Korea (Colletotrichum gloeosporiodies에 의한 조팝나무 탄저병)

  • Kwon, Jin-Hyeuk;Lee, Chan-Jung;Park, Chang-Seuk
    • The Korean Journal of Mycology
    • /
    • v.33 no.1
    • /
    • pp.35-37
    • /
    • 2005
  • Anthracnose symptoms on Spiraea prunifolia were observed around the residential area of Dongbumyon, Geoje City, Gyeongnam Province, Korea in 2002 and 2003. Typical symptoms of the disease were dark red spot on the leaves and black spot on the stem. The pathogen formed gray to dark gray colony on potato dextrose agar. Conidia were single celled, color, ovoid or oblong in shape and $6{\sim}12\;{\times}\;3{\sim}5\;{\mu}m$ in size. Seta were dark brown in color, cone-shaped in shape and $23{\sim}42\;{\times}\;2{\sim}4\;{\mu}m$ in size. The optimum temperature for growth of the isolate was about $25{\sim}30^{\circ}C$. On the basis of mycological characteristics and pathogenicity test on host plants, the fungus was identified as Colletotrichum gloeosporioides. This is the first report on the anthracnose of S. prunifolia caused by C. gloeosporioides in Korea.

Transcriptional Analysis of 10 Selected Genes in a Model of Penicillin G Induced Persistence of Chlamydophila psittaci in HeLa Cells

  • Hu, Yanqun;Chen, Lili;Wang, Chuan;Xie, Yafeng;Chen, Zhixi;Liu, Liangzhuan;Su, Zehong;Wu, Yimou
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1246-1256
    • /
    • 2015
  • Chlamydophila psittaci is an important intracellular pathogen. Persistent infection is an important state of the host-parasite interaction in this chlamydial infection, which plays a significant role in spreading the organism within animal populations and in causing chronic chlamydiosis and serious sequelae. In this study, a C. psittaci persistent infection cell model was induced by penicillin G, and real-time quantitative PCR was used to study the transcriptional levels of 10 C. psittaci genes (dnaA, dnaK, ftsW, ftsY, grpE, rpsD, incC, omcB, CPSIT_0846, and CPSIT_0042) in acute and penicillin-G-induced persistent infection cultures. Compared with the acute cultures, the penicillin-G-treated cultures showed a reduced chlamydial inclusion size and a significantly decreased number of elementary body particles. Additionally, some enlarged aberrant reticulate body particles were present in the penicillin-G-treated cultures but not the acute ones. The expression levels of genes encoding products for cell division (FtsW, FtsY) and outer membrane protein E encoding gene (CPSIT_0042) were downregulated (p < 0.05) from 6 h post-infection onward in the persistent infection cultures. Also from 6 h post-infection, the expression levels of DnaA, DnaK, IncC, RpsD, GrpE, and CPSIT_0846 were upregulated (p < 0.05); however, the expression level of OmcB in the persistent infection was< almost the same as that in the acute infection (p > 0.05). These results provide new insight regarding molecular activities that accompany persistence of C. psittaci, which may play important roles in the pathogenesis of C. psittaci infection.

Homologous Expression and Quantitative Analysis of T3SS-Dependent Secretion of TAP-Tagged XoAvrBs2 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract

  • Kim, S.H.;Lee, S.E.;Hong, M.K.;Song, N.H.;Yoon, B.;Viet, P.T.;Ahn, Y.J.;Lee, B.M.;Jung, J.W.;Kim, K.P.;Han, Y.S.;Kim, J.G.;Kang, L.W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.679-685
    • /
    • 2011
  • Xanthomonas oryzae pv. oryzae (Xoo) produces a putative effector, XoAvrBs2. We expressed XoAvrBs2 homologously in Xoo with a TAP-tag at the C-terminus to enable quantitative analysis of protein expression and secretion. Addition of rice leaf extracts from both Xoo-sensitive and Xoo-resistant rice cultivars to the Xoo cells induced expression of the XoAvrBs2 gene at the transcriptional and translational levels, and also stimulated a remarkable amount of XoAvrBs2 secretion into the medium. In a T3SS-defective Xoo mutant strain, secretion of the TAPtagged XoAvrBs2 was blocked. Thus, we elucidated the transcriptional and translational expressions of the XoAvrBs2 gene in Xoo was induced in vitro by the interaction with rice and the induced secretion of XoAvrBs2 was T3SSdependent. It is the first report to measure the homologous expression and secretion of XoAvrBs2 in vitro by rice leaf extract. Our system for the quantitative analysis of effector protein expression and secretion could be generally used for the study of host-pathogen interactions.

Effects of Temperature on Systemic Infection and Symptom Expression of Turnip mosaic virus in Chinese cabbage (Brassica campestris)

  • Chung, Bong Nam;Choi, Kyung San;Ahn, Jeong Joon;Joa, Jae Ho;Do, Ki Seck;Park, Kyo-Sun
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.363-370
    • /
    • 2015
  • Using the Chinese cabbage (Brassica campestris) cultivar 'Chun-goang' as a host and turnip mosaic virus (TuMV) as a pathogen, we studied the effects of ambient temperature ($13^{\circ}C$, $18^{\circ}C$, $23^{\circ}C$, $28^{\circ}C$ and $33^{\circ}C$) on disease intensity and the speed of systemic infection. The optimal temperature for symptom expression of TuMV was $18-28^{\circ}C$. However, symptoms of viral infection were initiated at $23-28^{\circ}C$ and 6 days post infection (dpi). Plants maintained at $33^{\circ}C$ were systemically infected as early as 6 dpi and remained symptomless until 12 or 22 dpi, depending on growth stage at the time of inoculation. It took 45 days for infection of plants grown at $13^{\circ}C$. Quantitative realtime polymerase chain reaction (q-PCR) results showed that the accumulation of virus coat protein was greater in plants grown at $23-28^{\circ}C$. The speed of systemic infection increased linearly with rising ambient temperature, up to $23^{\circ}C$. The zero-infection temperature was $10.1^{\circ}C$. To study the effects of abruptly elevated temperatures on systemic infection, plants inoculated with TuMV were maintained at $10^{\circ}C$ for 20 d; transferred to a growth chamber at temperatures of $13^{\circ}C$, $18^{\circ}C$, $23^{\circ}C$, $28^{\circ}C$, or $33^{\circ}C$ for 1, 2, or 3 d; and then moved back to $10^{\circ}C$. The numbers of plants infected increased as duration of exposure to higher temperatures and dpi increased.

Occurrence of Downy Mildew on Watermelon (Citrullus lanatus) Caused by Pseudoperonospora cubensis on Seedling Nursery in Korea (육묘상에서 Pseudoperonospora cubensis에 의한 수박 노균병 발생)

  • Kwon Jin-Hyeuk;Park Chang-Seuk
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.125-128
    • /
    • 2006
  • Downy mildew caused by Pseudoperonospora cubensis (Berkeley & Curtis) occurred on the cotyledon of gourd (Lagenaria leucantha cv. Sambokkkul) and scion of watermelon (cv. FR couple) in commercial nursery around Jinju city, Gyeongnam province in Korea in 2005 and 2006. The disease symptoms usually started with water-soaking lesions on cotyledon and then the infected leaves became withered and eventually died. The sporangia of the pathogen were one-celled, ovoid to ellipsoid in shape, pale grayish in color, and $20{\sim}32{\times}14{\sim}18{\mu}m$ in size. Sporangiophores were errect, branched, and $140{\sim}380{\times}4{\sim}8{\mu}m$ in size. Pathogenicity of the causal organism was proved according to artificial inoculations. Although the virulence of the causal fungus on the host plants was not strong, it produced typical symptoms. The causal organism was identified as Pseudoperonospora cubensis (Berkeley & Curtis) based on the mycological characteristics of the fungus and pathogenicity. This is the first report on downy mildew of watermelon caused by P. cubensis in Korea.