• Title/Summary/Keyword: Horticultural Fertilizer

Search Result 279, Processing Time 0.026 seconds

An Asiatic Hybrid Lily 'Yeri' with Spotted Deep Purple Petals (화단용 자주색 아시아틱나리 '예리' 육성)

  • Rhee, Hye Kyung;Cho, Hae Ryong;Shin, Hak Ki;Lim, Jin Hee;Kim, Mi Seon
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.3
    • /
    • pp.216-219
    • /
    • 2010
  • An Asiatic lily cultivar 'Yeri' was developed in 2005 at National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Korea. The cross was made in 1993 between Asiatic lily 'Geneve', a light pink colored cultivar, and 'Montreux', deep purple colored cultivar. The first selection was done and was tentatively named as 'A95-68' in 1995. After in vitro multiplication and bulbing production, growth and flowering characteristic tests were conducted from 1996 to 2003. The evaluation of characteristics was performed and named as 'Wongyo C1-19' in 2005 that was registered as 'Yeri' to the registration office of Korea Seed & Variety Service. 'Yeri' flowered at the first of July and grew average 34.6 cm stem in length. Flowers bloomed facing upward, unspotted in petals and deep purple (RHS, RP58A). The size of flower was 13.3 cm. Mean petal length and width was 7.7 cm and 2.7 cm, respectively. Leaves were 5.1 cm long and 0.5 cm wide, respectively. The weight and size of bulb were 9.6 g and 11.7 cm, respectively. Year-round flowering can be done by storing the bulb under $-1.5^{\circ}C$ conditions. For forced cultivation, it was necessary to add calcium to the fertilizer or remove side scales to prevent leaf scorch. It was needed to control Botrytis disease in wet season.

Effect of Consequent Application of Pig Manure Compost on Soil Chemical Properties and Dehydrogenase Activity in Volcanic Ash Soil (돈분퇴비 연용이 감자재배 화산회토양의 화학성과 탈수소 효소활성에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Won, Hang-Yeon;Koh, Sang-Wook;Hyun, Hae-Nam;Lee, Chong-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.283-288
    • /
    • 2010
  • This study were carried out to evaluate effect of consequent application of pig manure compost (PMC) on soil chemical properties, dehydrogenase activity, and yield of potato in volcanic ash soil. The more application rate of PMC increased, the more increased soil pH, total-nitrogen, available phosphate, exchangeable cations (K, Ca, and Mg), heavymetal (Zn and Cu)contents. When application rate of PMC and crop cultivation times increased gradually, soil dehydrogenase activity was significantly increased. After third cultivation period, dehydrogenase activity showed PMC 2 ton (3.5), PMC 4 ton (6.3), PMC 6 ton (8.0 ug TPF $g^{-1}\;24h^{-1}$), respectively. The activity was twofold higher than first cultivation period. During the third cultivation period, dehydrogenase activity increased linearly comparison to Cu and Zn contents and that was correlated with Cu ($R^2$=0.907) and Zn ($R^2$=0.859) content, respectively. As the application rate of PMC increased, the yield of potato increased, but NPK+PMC 2 ton treatment was more higher than other treatments.

Studies on Microflora of the Paddy and Upland Soils of Korea -II. Distribution of Microflora of the Upland Soils (우리나라 논. 밭토양(土壤)의 미생물상(微生物相)에 관한 연구(硏究) -II. 밭 토양미생물(土壤微生物) 분포조사(分布調査))

  • Yoo, Ick-Dong;Yun, Seh-Young;Lee, Myong-Goo;Ryu, Jin-Chang;Huh, Beom-Lyang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.406-414
    • /
    • 1984
  • Sixty upland soil samples were collected from various horticultural areas to find out the distribution status of soil miroflora. The result are summerized as follows: 1. The mean numbers of microflora in collected upland soils were $89.2{\times}10^6$ in bacteria (B), $30.1{\times}10^5$ in actinonmycetes(A), and $73.4{\times}10^3$ in fungi (F), per gr dry soil. The ratios B/F, B/A and A/F were 122, 3 and 41, respectively. 2. Soil microflora population among different cropping areas were following orders: Bacteria: facilitated horticultural crop > peper > garlic > ginger > oninon > near municipal vegetable > ginseng > grape > peanut area. Actinomycetes: garlic > pepper > near municipal vegetable > facilitated horticultural corp=ginger > onion ginseng > peanut > grape area. Fungi: facilitated horiticultural > crop > near municipal vegetable > peper > ginger > ginseng > grape > peanut garlic > onion area. 3. The significant correlation were obtained between the numbers of microflora and soil chemical properties, avaibale phosphorous, $Mg^{{+}{+}}$, $Ca^{{+}{+}}$, T-C and pH.

  • PDF

Effect of Temperature Condition on Nitrogen Mineralization and Soil Microbial Community Shift in Volcanic Ash Soil (온도가 화산회토양의 질소무기화와 미생물군집이동에 미치는 영향)

  • Joa, Jae-Ho;Moon, Doo-Gyung;Koh, Sang-Wook;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.467-474
    • /
    • 2012
  • This study was carried out to evaluate effect of temperature condition on nitrogen mineralization of organic matter, distribution of microbial group by PLFA profiles, and soil microbial community structure in volcanic ash soil. Dried soil 30 g mixed well each 2 g of pellet (OFPE) organic fertilizers, pig manure compost (PMC), and food waste compost (FWC). And then had incubated at $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, respectively. Nitrogen mineralization rate increased with increasing temperature and that was in the order of FWC>OFPE>PMC. Distribution ratio of microbial group by PLFA profiles were different significantly caused by incubation temperature and the type of organic matter. As incubating time passed, density of microbial group decreased gradually. The Gram-bacteria PLFA/Gram+ bacteria PLFA, Fungi PLFA/Bacteria PLFA, and Unsaturated PLFA/saturated PLFA ratios were decreased according to the increasing temperature gradually. But cy19:0/$18:1{\omega}7c$ ratio increased both FWC and PMC treatment. Principal component analysis using PLFA profiles showed that microbial community structure made up clearly at both 75 days ($10^{\circ}C$) and 270 days ($30^{\circ}C$) by temperature factor. As incubating time passed, microbial community structure shifted gradually.

Response of Soil Microbial Communities to Different Cultivation Systems in Controlled Horticultural Land

  • Lee, You-Seok;Kang, Jeong-Hwa;Choi, Kyeong-Ju;Lee, Seong-Tae;Kim, Eun-Seok;Song, Won-Doo;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.118-126
    • /
    • 2011
  • Ester-linked fatty acid methyl ester (EL-FAME) profiles were used to describe differences in soil microbial communities influenced by conventional farming system (CFS), and organic farming system (OFS) in controlled horticultural land. Soil physicochemical properties and soil microbial communities were determined in the experimental fields. Higher organic matter content in OFS reduced soil bulk density which in turn increased the soil porosity. Generally, soil chemical properties in OFS were higher than those of CFS, but EC value in OFS was significantly lower than that of CFS. With the exception of Fe content, other macronutrient contents and pH in both farming system decreased with the soil depth. Soil microbial biomass of OFS was approximately 1.3 times in topsoil and 1.8 times in subsoil higher than those of CFS. Lower ratios of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ were found in the CFS soils than the OFS soils, indicating that microbial stress decreased. The ratio of MUFA to SFA was higher in OFS due to organic input to the soil. In principal components analysis (PCA), the first variable accounted for 54.3%, while the second for 27.3%, respectively. The PC1 of the PCA separated the samples from CFS and OFS, while the PC2 of the PCA separated the samples from topsoil and subsoil. EL-FAMEs with the positive eigenvector coefficients for PC1 were cy17: 0 to $16:1{\omega}7c$ ratio, cy19:0 to $18:1{\omega}7c$ ratio, soil pH, soil organic matter, and soil $NO_3$-N content. Our findings suggest that the shifting cy19:0 to $18:1{\omega}7c$ ratio should be considered as potential factors responsible for the clear microbial community differentiation observed between different cultivation systems and soil depth in controlled horticultural land.

Effect of Methylotrophic Bacteria in Seedling Development of Some Crops under Gnotobiotic Condition (Methylotrophic bacteria 접종이 작물 유묘 생장에 미치는 영향)

  • Hong, In-Soo;Kim, Jun-Seok;Lee, Min-Kyoung;Yim, Woo-Jong;Islam, Md. Rashedul;Boruah, Hari P. Deka;Chauhan, Puneet Singh;Han, Gwang-Hyun;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.4
    • /
    • pp.317-322
    • /
    • 2009
  • Healthy seedling generation is the major concern in overcoming adverse effects of biotic and abiotic stresses during tender stage of development in vegetables and horticultural crops. Because of this, priority is given to research leading to the generation of healthy seedlings in crops subjected to transplanting and bedding. In this study, growth pouch experiments were conducted to determine the effect of inoculation of six different strains of Methylobacterium sp. namely, M. oryzae CBMB20, M. phyllosphaerae CBMB27, M. suomiense CBMB120, and Methylobacterium strains CBMB12, CBMB15 and CBMB17 on the seedling development of the vegetable crops cabbage, Chinese cabbage and cucumber; and horticultural crops tomato and red pepper. Crops treated with the test strains generally showed higher seedling dry matter accumulation compared to the control. Significantly higher accumulation was exhibited by CBMB12, CBMB17, and CBMB20 in cabbage, as well as for CBMB27 and CBMB120 on tomato and Chinese cabbage, respectively. Furthermore, all the strains promoted root elongation in cucumber and tomato seedlings while in Chinese cabbage and red pepper, root elongation was observed with CBMB120 and CBMB12 inoculation, respectively. Large scale nursery study is needed to develop a thorough protocol for healthy seedling development with the use of these strains.

Comparison of the European Standard Methods and the Rural Development Administration Methods for Determining Physical Properties of Horticultural Substrates (유럽표준분석법과 농진청 표준분석법에 의한 원예용 상토의 물리성 비교분석)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Kim, Kye-Hoon;Kang, Ji-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.116-122
    • /
    • 2006
  • This study was carried out to compare physical properties of the horticultural substrates measured by the European standard methods (CEN methods) and the Rural Development Administration of Korea methods (RDA methods). Sixty horticultural substrates including 40 marketed substrates and 10 organic and inorganic raw materials such as peat moss, coir dust, rice hull, perlite and zeolite were sampled. The samples were then analyzed for 6 physical properties by both CEN methods and RDA methods. The results of both methods were analyzed by linear regression. Bulk density ($R^2=0.8304$), particle density ($R^2=0.8136$) and porosity ($R^2=0.6374$) values measured by the two methods were highly significant. Whereas those for easily available water (EAW, $R^2=0.3327$), water volume ($R^2=0.2692$) and air volume ($R^2=0.0739$) were not significant. Further research is needed to facilitate the conversion between the two methods.

Factors Associated with the Occurrence of Fruit Skin Stain during Growing Period in 'Niitaka' Pear (배 '신고'의 생육기에 나타나는 과피얼룩과의 발생 요인)

  • Moon, Byung-Woo;Nam, Ki-Woong;Moon, Young-Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.3
    • /
    • pp.198-204
    • /
    • 2014
  • BACKGROUND: Caused by cultural environment, the fruit skin stain results in serious damages to pear fruit. Particularly susceptible to this damage, 'Niitaka' pear accounts for 82% of pear cultivation in Korea and many farmers growing the pear trees have suffered economic losses due to fruit skin stain. This study investigated the effect of different treatments of 'Niitaka' pear during growing period on the occurrence of fruit skin stain. METHODS AND RESULTS: The treatments in the field included gibberellin (GA) paste, spraying with amino acid tree fertilizer, functional bagging, and coating of the inner paper bag with agents. The relationships between tree vigor, mineral nutrition concentration and fruit skin stain occurrence were also investigated. The fruit skin stain symptoms occurred from young fruit (May 25) until harvest. There was no exposed fruit flesh. The occurrence of fruit skin stain was significantly reduced in normal tree (shoot length 110 cm), as well as using GA paste treatment, and bagging in calcium and lime sulfur coated bags. However, spraying with amino acid tree fertilizer made no difference in comparison to control. In addition, bags in which the inner paper was coated with lime sulfur and soybean oil resulted in chemical injury to the fruit skin caused by bagging. The K concentration of shoot wood and fruit skin were higher than those of the control. Also, there were lower T-N, K concentration of leaf. CONCLUSION: These results suggest that occurrence of fruit skin stain in 'Niitaka' pear fruits during the growing period can be reduced by GA paste and bagging in calcium and lime sulfur coated bags. The symptoms of chemical injury to the fruit skin caused by bagging in lime sulfur and soybean oil coated inner paper were different compared to skin stain occurring in fruit during the growing period.

Effect of Elevated Carbon Dioxide Concentration and Temperature on Yield and Fruit Characteristics of Tomato (Lycopersicon esculentum Mill.) (이산화탄소 및 온도 상승이 토마토 수량 및 과실특성에 미치는 영향)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.428-434
    • /
    • 2008
  • The objective of this study is to investigate the effect of the level of $CO_2$ (370 and $650{\mu}mol\;mol^{-1}$) and temperature (ambient and ambient+$5^{\circ}C$) on tomato growth and fruit characteristics as affected by the application rate of N-fertilizer (68 and $204\;N\;kg\;ha^{-1}$), for the purpose of evaluating the influence of elevated $CO_2$ and temperature on tomato crop. The elevated atmospheric $CO_2$ and temperature increased the plant height and stem diameter for tomato crop, while the differences among the nitrogen(N) application rates were not significantly different. Under the elevated $CO_2$, temperature, and a higher N application rate, the biomass of aerial part increased. The fruit yield showed the same result as the biomass except for the elevated temperature. The elevated temperature made the size of fruit move toward the small, but the elevated $CO_2$ and the application of N-fertilizer were vice versa. The sugar content and pH of fruit juice were affected by nitrogen application rate, but not by the elevated $CO_2$ and temperature. These results showed that both the elevated $CO_2$ and temperature stimulated the vegetative growth of aerial parts for tomato, but each effects on the yield of fruit showed an opposite result between the elevated temperature and $CO_2$. In conclusion, the elevated $CO_2$ increased tomato yield and the ratio of large size of fruit, but the elevated temperature did not. Therefore, to secure the productivity of tomato as nowadays in future environment, it will need to develop new breeder as high temperature-tolerable tomato species or new type of cropping systems.

Development of Standard Analysis Methods for Physical Properties on Korean bedsoil 1. Particle density and Bulk density (우리나라 상토의 물리적 표준분석법 설정 연구 1. 입자밀도 및 용적밀도)

  • Kim, Lee-Yul;Cho, Hee-Kee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.6
    • /
    • pp.327-334
    • /
    • 2002
  • Method of besoil analysis were difficult to be applied universally since the use and the source material of bedsoils are diverse from country to country. Korean Standard Methods for Bedsoil Analysis was developed to measure the particle and bulk density. Fifty-three samples for horticultural bedsoil and nine samples for paddy rice bedsoil in the current market were collected. Particle density was measured by electrical pyconometer with He gas, and bulk density by the sandbox method, free fall method, plunger compaction method, free fall and plunger method, and sample weight compaction method. While the use of glass pycnometer which measures particle density to fill blank space with water was inappropriate due to floating organic and calcined inorganic materials in the water, the electrical pycnometer with gas type was suitable considering speed and accuracy. For bulk density, the sandbox method recommended as European Standard Method was more reasonable in principle than other methods. However, this method requires expensive apparatus and intricate process. Plunger compaction method was proposed as standard method, since it had higher consistence with the sandbox method than other methods, as well as an advantage of easy and prompt measurement. Particle density of bedsoil ranged $1.48{\sim}2.67Mg\;m^{-3}$(mean $1.93Mg\;m^{-3}$) for horticultural bedsoil and $2.33{\sim}2.67Mg\;m^{-3}$ (mean $2.43Mg\;m^{-3}$) for paddy rice bedsoil by the electrical pycnometer with He gas. Bulk density of bedsoil ranged $0.11{\sim}0.40Mg\;m^{-3}$ (mean $0.22Mg\;m^{-3}$) for horticultural bedsoil and $0.84{\sim}1.26Mg\;m^{-3}$(mean $1.01Mg\;m^{-3}$) for paddy rice bedsoil by plunger compaction method.