Browse > Article

Effect of Methylotrophic Bacteria in Seedling Development of Some Crops under Gnotobiotic Condition  

Hong, In-Soo (Department of Agricultural Chemistry, Chungbuk National University)
Kim, Jun-Seok (Department of Agricultural Chemistry, Chungbuk National University)
Lee, Min-Kyoung (Department of Agricultural Chemistry, Chungbuk National University)
Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University)
Islam, Md. Rashedul (Department of Agricultural Chemistry, Chungbuk National University)
Boruah, Hari P. Deka (Department of Agricultural Chemistry, Chungbuk National University)
Chauhan, Puneet Singh (Department of Agricultural Chemistry, Chungbuk National University)
Han, Gwang-Hyun (Department of Agricultural Chemistry, Chungbuk National University)
Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.42, no.4, 2009 , pp. 317-322 More about this Journal
Abstract
Healthy seedling generation is the major concern in overcoming adverse effects of biotic and abiotic stresses during tender stage of development in vegetables and horticultural crops. Because of this, priority is given to research leading to the generation of healthy seedlings in crops subjected to transplanting and bedding. In this study, growth pouch experiments were conducted to determine the effect of inoculation of six different strains of Methylobacterium sp. namely, M. oryzae CBMB20, M. phyllosphaerae CBMB27, M. suomiense CBMB120, and Methylobacterium strains CBMB12, CBMB15 and CBMB17 on the seedling development of the vegetable crops cabbage, Chinese cabbage and cucumber; and horticultural crops tomato and red pepper. Crops treated with the test strains generally showed higher seedling dry matter accumulation compared to the control. Significantly higher accumulation was exhibited by CBMB12, CBMB17, and CBMB20 in cabbage, as well as for CBMB27 and CBMB120 on tomato and Chinese cabbage, respectively. Furthermore, all the strains promoted root elongation in cucumber and tomato seedlings while in Chinese cabbage and red pepper, root elongation was observed with CBMB120 and CBMB12 inoculation, respectively. Large scale nursery study is needed to develop a thorough protocol for healthy seedling development with the use of these strains.
Keywords
Methylobacterium sp.; Inoculation effect; Seedling; Vegetable crops; Horticultural crops; Biological activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Holland, M. A. and J. C. Polacco. 1992. Urease null and hydrogenase null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol 98:942-948   DOI   ScienceOn
2 Madhaiyan, M., S. Poonguzhali, H. S. Lee, K. Hari, S. P. Sundaram and T. M. Sa. 2005. Pink pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol. Fertil. Soils 41:350-358   DOI   ScienceOn
3 Basile, D. V., M. R. Basile, Q. Y. Li and W. A. Corpe. 1985.Vitamin B12 stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.)Dum (Hepaticae). Bryologist 88:77-81   DOI   ScienceOn
4 Baskin, J. M. and C. C. Baskin. 1989. Physiology of dormancy and germination in relation to seed bank ecology; 53-66. In : M. A.Leach, V. T. Parker and R.L. Simpson (eds) Ecology of soil seed banks. Acad. Press, San Diego, California
5 Deka Boruah, H.P., B. K. Rabha, N. Saikia and B. S. Dileep Kumar.2003. Fluorescent Pseudomonas influences palisade mesophyll development and spatial root development in Phaseolus vulgaris. Plant and Soil. 256: 291-301   DOI   ScienceOn
6 Holland, M. A. and J. C. Polacco. 1994. PPFMs and other covert contaminants: is there more to plant physiology than just plant? Ann. Rev Plant Physiol Plant Mol Biol 45:197-209   DOI   ScienceOn
7 Lee, H. S., Madhaiyan, M., C. W. Kim, S. J. Choi, K. Y. Chun and T. M. Sa 2006. Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N2 - fixing methylotrophic isolates. Biol. Fer. Soils 42:402-408   DOI   ScienceOn
8 Ma, J. H., J. L. Yao, D. Cohen and B. Morris. 1998. Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Rep. 17:211-214   DOI   ScienceOn
9 Scoggins, H. L., D. A. Bailey and P. V. Nelson. 2002. Efficacy of the press extraction method for bedding plant plug nutrient monitoring. Hort. Sci. 37:108-112
10 Stamps, R.H. 2000. Management of nutrients in ornamental plant production systems in Florida: an overview. Soil. Sci. and Crop. Sci. Soc. of Florida Proc. 59:27-31
11 Van Iersel, M. 1999. Fertilizer concentration affects growth and nutrient concentration of subirrigated pansies. Hort. Sci. 34:660-663
12 Zandstra, J. W. and A. Liptay 1999. Nutritional effects on transplant root and shoot growth areview. Acta Hort. 504:23-31
13 Kloepper, J.W., J. Leong, M. Teintze, M.N. Schroth. 1980.Enhanced plant growth by siderophores produced by plant growthpromoting rhizobacteria. Nature 286:885-886   DOI
14 Main, L.C., L.E. Steckel and R.M. Hayes. 2006. Biotic and abitic factors influence horseweed emergence. Weed Sci. 54:1101 1105   DOI   ScienceOn
15 Glick, B.R., D.M. Penrose and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190:63-68   DOI   ScienceOn
16 Ryu, J., M. Madhaiyan, S. Poonguzhali, W. Yim, P. Indiragandhi,K. Kim, A. Rangaswamy, Y. Jongchul, H. K. Kye and T. M. Sa 2006. Plant growth substances produced by Methylobacterium spp. And their effect on Tomato (Lycopersicon esculentum L.) and Red pepper (Capsicum annum L.) growth. J. Microbiol. Biotechnol. 16:1622-1628
17 Madhaiyan, M., S. Poonguzhali, K. Soon Woo and T. M. Sa. 2009. Methylobacterium phyllosphaerae sp. nov., a pink pigmented,facultative methylotrophs from the phyllosphere of rice. Int. J. of Syst. and Evo. Microbiol. 59:22-27   DOI   ScienceOn
18 Ail, B., A. N. sabri K. Ljung, and S. Hasnain. 2009. Quantification of indole 3 acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.) World J. Microbiol.Biotechnol. 25: 519-526   DOI   ScienceOn
19 Sy, A., A. C. J. Timmers, C. Knief and J. A. Vorholt. 2005.Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245-7252   DOI   ScienceOn
20 Christopher, L. M., E. L. Steckel, R. M. Hayes and T. C. Mueller.2006. Biotic and abiotic factors influence horseweed emergence.Weed Science 54:1101-1105   DOI   ScienceOn
21 Kennedy, I. R., A. T. M. A. Choudhury, and L. K. Mihaly 2004.Non-symbiotic bacterial diazotrophs in crop-farming systems:cantheir potential for growth promotion be better exploited? Soil Biol. Biochem. 3:1229-1244
22 Lidstrom, M. E. and Chistoserdova, L. 2002. Plants in the pink: cytokinin production by Methylobacterium. J Bacteriol 184, 1818   DOI   ScienceOn
23 Baldani, V.L.D., J. I. Baldani and J. Dobereiner. 1987. Inoculation of field grown wheat (Triticum aestivum) with Azospirillum spp. in Brazil. Biol. Fertil. Soil 4:37-40
24 Poonguzhali, S., M. Madhaiyan and T.M. Sa. 2007. Production of acyl homoserine lactone quorum sensing signals is wide spread in gram negative Methylobacterium. J. Micobiol. Biotechnol. 17:226-233   PUBMED
25 Sy, A., E. Giraud, P. Jourand, N. Garcia, A. Willems, P. de Lajudie,Y. Prin, M. Neyra, M. Gillis and other authors. 2001.Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214-220   DOI   ScienceOn
26 Greenwood, D.J., J. M. T. Mckee, D. P. Fuller, I. G. Burns and B. J.Mulholland. 2007. A novel method of supplying nutrients permits predictable shoot growth and root:shoot ratios of pre transplant bedding plants. Annals Bot. 99:171-182   DOI   ScienceOn
27 Koger, C. H., K. N. Reddy and D. H. Poston. 2004. Factors affecting seed germination, seedling emergence, and survival of texas weed (Caperonia palustris). Weed Science 52(6):989-995   DOI   ScienceOn
28 Sonesson, L. K. 1994. Growth and survival after cotyledon removal in quercus rabur seedlings, grown in different natural soil types. Oikos. 69:65-70   DOI   ScienceOn
29 Madhaiyan, M., S. Poonguzhali, J. H. Ryu and T. M. Sa, 2006.Regulation of ethylene levels in canola (Brassica campestris) by 1 aminocyclopropane 1 carboxylate deaminase containing Methylobacterium fujisawaense. Planta 224:268-278   DOI   ScienceOn
30 Orhan, A, A. Esitken, S. Ercisli, M. Turan and F. Sahin. 2006.Effects of plant growth promoting rhizobacteria (PGPR) on yield,growth and nutrient contents in organically growing raspberry.Scientia Horticulturae. 111:38-43   DOI   ScienceOn
31 Astrid, V., M. Adriana, R. J. Manuel, B. J. Miguel and A. Rosario.2003. Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG induced drought stress. Mycorrhiza 13: 249-256   DOI   ScienceOn
32 Suzanne, K. 1998. Effect of seed damage on germination in common vetch (Vicia sativa L.). The Am. Mid. Natural. 140:393-396   DOI   ScienceOn
33 Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y.Chung, S. Sundaram and T. M. Sa .2004. Growth promotion and induction of systemic resistance in rice cultivar Co 47 (Oryza sativa L.) by Methylobacterium sp. Bot. Bull. Acad. Sin. 45:315-324
34 Poonguzhali, S., M. Madhaiyan, Y. Woo Jong, K. Kyonka A and T.M. Sa. 2008.Colonization pattern of plant root and leaf surfaces visualized by use of green fluorescent marked strain of Methylobacterium suomiense and its persistence in rhizosphere. Applied Microbial and Cell Physiol. 78:1033-1043   DOI   ScienceOn
35 Koenig, R. L., R. O. Morris and J. C. Polacco. 2002. tRNA is the source of low level trans zeatin production in Methylobacterium spp. J Bacteriol 184, 1832-1842   DOI   ScienceOn