• Title/Summary/Keyword: Horizontal vibration

Search Result 340, Processing Time 0.024 seconds

Performance study on the whole vibration process of a museum induced by metro

  • Yang, Weiguo;Wang, Meng;Shi, Jianquan;Ge, Jiaqi;Zhang, Nan;Ma, Botao
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.413-434
    • /
    • 2015
  • The vibrations caused by metro operation propagate through surrounding soil, further induce secondary vibrations of the nearby underground structures and adjacent buildings. In order to investigate the effects of vibrations caused by metro on use performance of buildings, vibration experiment of Chengdu museum was carried out firstly. Then, the coupling tunnel-soil-structure finite element model was established with software ANSYS detailedly, providing a useful tool for investigating the vibration performances of structures. Furthermore, the dynamic responses and vibration predictions of museum building were obtained respectively by the whole process time-domain analysis and frequency-domain analysis, which were compared with the vibration reference values of museum. Quantitative analyses of the museum building performance were carried out, and the possible tendency and changing laws of vibration level with floors were proposed. Finally, the related vibration isolation measures were compared and discussed. The tests and analysis results show that: The vertical vibration responses almost increased with the increasing of building floors, while weak floors existed for the curve of horizontal vibration; The vertical vibrations were larger than the horizontal vibrations, indicating the vibration performances of building caused by metro were characterized with vertical vibrations; The frequencies of the museum corresponding to the peak vibration levels were around 6~17Hz; The damping effect of structure with 33m-span cantilever on vertical vibration was obvious, however, the damping effect of structure with foundation vibration isolators was not obvious.

Dynamic Characteristics of Railway Plate Girder Bridges with Increase of Diesel Locomotive Speed (철도차량의 증속에 따른 판형교의 진동특성)

  • Cho, Eun Sang;Kim, Hyun Min;Hwang, Won Sup;Oh, Ji Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.769-782
    • /
    • 2006
  • As the ambient vibration test (AVT) of railway bridges has a limited range of speed, it has a limitation in examining the dynamic behavior of bridges accordingto speed. Thus, in order to analyze the correlation between the speed of a train passing over a bridge and the bridge's dynamic response, we conducted a speed-increasing experiment using a real diesel locomotive. To analyze the acceleration response characteristics, we attached seven vertical accelerometers at equal intervals throughout the entire section of the bridge except the supports, and one horizontal accelerometer to the middle span. Linear variable differential transformers (LVDT) were installed at the bridge's center in both vertical and horizontal directions to investigate the vertical and horizontal behaviors. The test train was statically loaded at the center and at the end of the bridge. And its speed was increased from 5 km/h to 90 km/h. With data obtained from the experiment, the vibration level was evaluated in each direction by the filtering frequency, and the level of horizontal vibration was examined in comparison with vertical vibration. The displacement and wheel load variation was analyzed by speed.

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.

Development of an omni-directional shear-horizontal wave magnetostrictive patch transducer for the effective inspection of a ferromagnetic plate (효과적인 강자성체 평판구조물 검사를 위한 전 방향 전단파 자기변형 패치 트랜스듀서 개발)

  • Seung, Hong Min;Kim, Yoon Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.548-549
    • /
    • 2014
  • Omni-directional shear-horizontal magnetostrictive patch transducers have a disadvantage that magnetic flux leakage into the plate when it is installed on a ferromagnetic plate. The leakage produces poor transduction efficiency and unwanted wave mode excitation which should be avoided in guided wave inspections of large plate-like structures. In order to resolve these problems, we newly developed a method to reduce the leakage into the plate. In the method, the patch and the magnet are vertically lifted off and their optimal positions are determined by numerical simulations. Also, the verification of the developed method is successfully verified by experiments.

  • PDF

A Study on Stability of Earthquake in Estuary Barrage through Shaking Table Test (실내 진동대 실험을 통한 하구둑 구조물의 내진 안정성에 관한 연구)

  • Shin, Eun-Chul;Kang, Hyoun-Hoi;Ryu, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.38-44
    • /
    • 2010
  • Shaking table tests were performed to reproduce the dynamic behavior of estuary barrage and its subbase soil which can be potentially damaged during earthquake loading. For understanding the vibration effect to the ground during earthquake, the model was formulated with 1/300 scale of prototype estuary barrage and subbase soil. Scott and Iai(1989) proposed the law of the similarity for similar experimental conditions. The laboratory model shaking table test was conducted under the vibration condition of simulated earthquake of 0.154g. The horizontal displacement on the structure was measured during the shaking table test. The pore water pressure was also monitored for the underground layers of soil. The field horizontal displacement and the pore water pressure can be predicted by using the results of the laboratory shaking table test.

  • PDF

Structural Analysis on Horizontal CNC Lathe (CNC 수평형 선반의 구조해석 연구)

  • Lee, Tae-Hong;Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.298-303
    • /
    • 2011
  • Recently, demand on machine tools has been increased because the machine and automobile industry is booming. Therefore, the machine tools need to have a high accuracy and productivity. To build a high precision machine tool and increase its productivity, structural analysis needs to be carried out for vibration and stiffness of the machine tool before its detail design. However, it is the fact that many manufacturers of machine tools depend on their know-how about design experience. Therefore, in this paper, the static and dynamic analysis is carried out for evaluating a horizontal CNC lathe and then, applied to its detail design. It is positive that the analysis can lead to reduction of design time and improvement of the quality of the lathe as its design proceeds.

The effect of the vertical excitation on horizontal response of structures

  • Ghaffarzadeh, Hosein;Nazeri, Ali
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.625-637
    • /
    • 2015
  • It is usual in design and assessment of structures to isolate the effects of vertical and horizontal excitations by ignoring their coupling effects. In this situation, total structural response is obtained by employing the well-known combination rules whereby independent assumed response components of earthquakes are combined. In fact, the effects of the simultaneity of the ground motion components are ignored. In this paper, the effect of vertical excitation on horizontal response of structures, the coupling of vertical and horizontal responses, has been evaluated. A computer program is prepared to perform nonlinear dynamic analysis based on the derived governing equations of coupled motions. In the case of simultaneous excitation the results show significant increases in spectral displacement in some periods of vibration in comparison to only horizontally excited systems. Moreover, whenever ratio of the vertical peak ground acceleration to horizontal one become larger, the significant increase in horizontal spectral displacements are observed.

Fundamental Study on Oscillating Tillage -Model Test on Draft Force, Torque, Power and Moment (진동경운(振動耕耘)에 관(關)한 기초연구(基礎硏究) -견인력(牽引力), 토오크, 소요동력(所要動力) 및 모멘트에 관(關)한 모형실험(模型實驗)-)

  • Kim, Y.H.;Kim, S.T.;La, W.J.;Min, Y.B.;Lee, S.K.
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 1981
  • A laboratory model test was carried out with a newly designed model to figure out the vibration characteristics of the vibratory tillage tool according to the method of forced vibration, i.e., horizontally and vertically forced vibrations. The results are summarized as follows: 1. The reduction ratios of the draft force of the vibratory blade were 14.2-42.6% for the case where the vibration was forced parallel to the travelling direction of the blade, and 15-54.5% for the vertically forced vibration. And it was thought that the method of vertically forced vibration was preferable to the reduction of the draft force. 2. The ratio of the draft force of a vibratory blade to that of a static one could be represented as a function of V/At. It was found to be possible to reduce the draft force by taking a lower value of (V/Af) and this meant that the effictiveness of tillage practice using the vibratory system would be limited. 3. The torque to the main rotating shaft to vibrate the model blade increased frequency and amplitude. This tendency varied according to the physical properties of tested soil. In case of horizontally forced vibration, the torque was 8~34% less than in case of vertically forced vibration. 4. With the increase of frequency, the total power requirement increased linearly, and also the portion of oscillating power requirement in the total power tended to increase. The magnitude of the total power requirement was 1.4-13 times greater than that of a static one for the case of horizontal vibration, and 1.5-15 times greater for the case of vertical vibration. It was thought that the horizontal vibration of the blade was preferable to the vertical vibration in view of the power requirement. 5. A linearity was found between the amplitude of moment oscillogram and magnitude of oscillating acceleration. Only positive values of moment occurred when the blade was forced to vibrate vertically, but negative values occurred in rarity in the case of amplitude A3 when the blade was forced to vibrate horizontally.

  • PDF

Human Postural Dynamics in Response to the Horizontal Vibration

  • Shin Young-Kyun;Fard Mohammad A.;Inooka Hikaru;Kim Il-Hwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.325-332
    • /
    • 2006
  • The dynamic responses of human standing postural control were investigated when subjects were exposed to long-term horizontal vibration. It was hypothesized that the motion of standing posture complexity mainly occurs in the mid-sagittal plane. The motor-driven support platform was designed as a source of vibration. The AC Servo-controlled motors produced anterior/posterior (AP) motion. The platform acceleration and the trunk angular velocity were used as the input and the output of the system, respectively. A method was proposed to identify the complexity of the standing posture dynamics. That is, during AP platform motion, the subject's knee, hip and neck were tightly constrained by fixing assembly, so the lower extremity, trunk and head of the subject's body were individually immovable. Through this method, it was assumed that the ankle joint rotation mainly contributed to maintaining their body balance. Four subjects took part in this study. During the experiment, the random vibration was generated at a magnitude of $0.44m/s^2$, and the duration of each trial was 40 seconds. Measured data were estimated by the coherence function and the frequency response function for analyzing the dynamic behavior of standing control over a frequency range from 0.2 to 3 Hz. Significant coherence values were found above 0.5 Hz. The estimation of frequency response function revealed the dominant resonance frequencies between 0.60 Hz and 0.68 Hz. On the basis of our results illustrated here, the linear model of standing postural control was further concluded.

Effect of Whole Body Horizontal Vibration Exercise in Chronic Low Back Pain Patients: Vertical Versus Horizontal Vibration Exercise

  • Kim, Heejae;Kwon, Bum Sun;Park, Jin-Woo;Lee, Hojun;Nam, Kiyeun;Park, Taejune;Cho, Yongjin;Kim, Taeyeon
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.804-813
    • /
    • 2018
  • Objective To elucidate the effect of a 12-week horizontal vibration exercise (HVE) in chronic low back pain (CLBP) patients as compared to vertical vibration exercise (VVE). Methods Twenty-eight CLBP patients were randomly assigned to either the HVE or VVE group. All participants performed the exercise for 30 minutes each day, three times a week, for a total of 12 weeks. Altered pain and functional ability were evaluated using the visual analog scale (VAS) and Oswestry Disability Index (ODI), respectively. Changes in lumbar muscle strength, transverse abdominis (TrA) and multifidus muscle thicknesses, and standing balance were measured using an isokinetic dynamometer, ultrasonography, and balance parameters, respectively. These assessments were evaluated prior to treatment, 6 weeks and 12 weeks after the first treatment, and 4 weeks after the end of treatment (that is, 16 weeks after the first treatment). Results According to the repeated-measures analysis of variance, there were significant improvements with time on VAS, ODI, standing balance score, lumbar flexor, and extensor muscle strength (all p<0.001 in both groups) without any significant changes in TrA (p=0.153 in HVE, p=0.561 in VVE group) or multifidus (p=0.737 in HVE, p=0.380 in VVE group) muscle thickness. Further, there were no significant differences between groups according to time in any of the assessments. No adverse events were noticed during treatment in either group. Conclusion HVE is as effective as VVE in reducing pain, strengthening the lumbar muscle, and improving the balance and functional abilities of CLBP patients. Vibrational exercise increases muscle strength without inducing muscle hypertrophy.