• Title/Summary/Keyword: Horizontal position-accuracy

Search Result 107, Processing Time 0.019 seconds

A Study on Accuracy Analysis and Application of Postion Tracking Technique for Worker Safety Management in Underground Space Construction Field (지하공간 건설시공현장에서의 작업자 안전관리를 위한 위치추적기술 정확도 분석 및 활용 연구)

  • Seol, Moonhyung;Jang, Yonggu;Son, Myungchan;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.45-51
    • /
    • 2013
  • In the construction site of underground buildings which have severe environment such as dust, noise, vibration, the technology of rescue the builders in the construction site when accident occurs by tracking the location of the builders and express the mission of supervisor smoothly. In this study, in order to acquire the location information of the builders in the construction site of underground buildings by using MEMS INS and air pressure sensor, we firstly performed the field test in construction site, analyzed the location and the elevation accuracy based on the detected results, and then verified its practicality and rationality after all. As a result, we could acquire worker's position-accuracy within 10m in horizontal direction and 4m in vertical direction. Therefore we could judge availability in construction fields of underground structure.

Evaluation of Horizontal Position Accuracy in Forest Road Completion Drawing (임도 준공도면의 수평위치 정확도 평가에 관한 연구)

  • Kim, Myeong-Jun;Kweon, Hyeong-Keun;Choi, Yeon-Ho;Yeom, In-Hwan;Lee, Joon-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2010
  • Forest roads of 16,424km have been constructed as infrastructure for efficient management of forest. The demand of forest road have been also increased steadily with SOC conception for forest management and wood production. But, accuracy verification by completion drawing of forest road needed aspects extration of geographic information to sound like forest road construction and completion drawing. However, verification for completion drawing has not ascertained. This study carried out the evaluation for position accuracy about constructed forest road in Chungcheongnam-do for evaluating horizontal position accuracy of completion drawing of forest road. In result, first of distance of completion drawing and real route designed completion drawing longer than the real route as Gongju 83m, Seosan 66m, Nonsan 27m and Dangjin 19m, respectively. Second, RMSE by point-correspondence was 11m~14.7m, buffering analysis appeared difference of 18~24m. Finally, index of shape was the similar completion and real route through 6.5~7.4 and data information of forest road corresponds to be perfect. For such reasons, the existing completion drawings have a problem that it cannot use graphic information for drawing digital map according to the regulation, and there is an urgent need for improvement to solve this problem in the process of design and construction.

준실시간 고정밀 GPS 자료처리 자동화 시스템 구축

  • 하지현;박관동;박필호;임형철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.33-38
    • /
    • 2003
  • We automated high-accuracy data processing routines for various near-real-time GPS applications. The automated system was based on UNIX, and it uses GIPSY-OASIS II and ultra-rapid orbits which is updated twice a day and provided online. The highest error in the estimated site position was 2 cm and 5 cm in the horizontal and vertical directions, respectively. The mean 3-D position error about 2 cm.

  • PDF

GPS Surveying by A Point Positioning (일점측위에 의한 GPS측정)

  • Lee, Y.H.;Mun, D.Y.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.119-130
    • /
    • 1998
  • As a satellite positioning system, GPS is designed to provide the information on three dimensional position, velocity, and time all over the world. The purpose of this paper is to obtain what day has the best accuracy and what time has the best accuracy of measuring of forteen-twenty mimutes for effective using of MAGELLAN G.P.S NAV DLX-10 system. The result of measurement maximum deviation value from November, 1997 to March, 1998 that latitude deviation is 3' .75 and longitude deviation is 2' .1 And the result of measurement maximum deviation value during fourteen minutes of April 29, 1998 that latitude deviation is 3' .75 and longitude deviation is 1' .9. The result of measurement maximum deviation value during twenty minutes of May 6, 1998 that latitude deviation is 4' .75 and longitude deviation is 2' .1 and that is provid 3' .25, 4' .1 to May 13, 1998. So, we expect efficient use of horizontal position for navigation.

  • PDF

Precision Analysis of NARX-based Vehicle Positioning Algorithm in GNSS Disconnected Area

  • Lee, Yong;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.289-295
    • /
    • 2021
  • Recently, owing to the development of autonomous vehicles, research on precisely determining the position of a moving object has been actively conducted. Previous research mainly used the fusion of GNSS/IMU (Global Positioning System / Inertial Navigation System) and sensors attached to the vehicle through a Kalman filter. However, in recent years, new technologies have been used to determine the location of a moving object owing to the improvement in computing power and the advent of deep learning. Various techniques using RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), and NARX (Nonlinear Auto-Regressive eXogenous model) exist for such learning-based positioning methods. The purpose of this study is to compare the precision of existing filter-based sensor fusion technology and the NARX-based method in case of GNSS signal blockages using simulation data. When the filter-based sensor integration technology was used, an average horizontal position error of 112.8 m occurred during 60 seconds of GNSS signal outages. The same experiment was performed 100 times using the NARX. Among them, an improvement in precision was confirmed in approximately 20% of the experimental results. The horizontal position accuracy was 22.65 m, which was confirmed to be better than that of the filter-based fusion technique.

The Evaluation of Position Accuracy to 1:1,000 and 1:5,000 scale Digital Map (1:1,000 및 1:5,000 수치지도의 위치정확도 검증)

  • Lee, Hyun-Jik;Park, Hong-Kee;Lee, Kang-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.1 s.11
    • /
    • pp.117-128
    • /
    • 1998
  • National digital maps (NDM) produced by diverse production methods through various stages are ready to distribute to public. The position accuracy problems in NDM should be inspected and evaluated to guarantee the quality of NDM. The purpose of this study is 1) to find out factors of impeding accuracy by examining the position accuracy of NDM on scales of 1:1,000 and 1:5,000, 2) to form the technical basis of making accurate digital maps and 3) to increase reliability and practical use of NDM. In this study, we found out 1) obstacles of making accurate mM especially in solving horizontal and vertical location accuracy problems and 2) error sources in production methods as well as stages. These results can be contributed to increase accuracy on modifying and upgrading NDM.

  • PDF

Improvements on the Three-Dimensional Positioning of High Resolution Stereo Satellite Imagery (고해상도 스테레오 위성영상의 3차원 정확도 평가 및 향상)

  • Jeong, In-Jun;Lee, Chang-Kyung;Yun, Kong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.617-625
    • /
    • 2014
  • The Rational Function Model has been used as a replacement sensor model in most commercial photogrammetric systems due to its capability of maintaining the accuracy of the physical sensor models. Although satellite images with rational polynomial coefficients have been used to determine three-dimensional position, it has limitations in the accuracy for large scale topographic mapping. In this study, high resolution stereo satellite images, QuickBird-2, were used to investigate how much the three-dimensional position accuracy was affected by the No. of ground control points, polynomial order, and distribution of GCPs. As the results, we can confirm that these experiments satisfy the accuracy requirements for horizontal and height position of 1:25,000 map scale.

Quality Assessment of Digital Surface Model Vertical Position Accuracies by Ground Control Point Location (지상기준점 선점 위치에 따른 DSM 높이 정확도 분석)

  • Lee, Jong Phil
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • Recently, Unmanned Aerial Vehicle utilization and image processing technology for remote sensing have diversified remarkably with Orthophoto and Digital Surface Model. In particular, It uses more application fields such as spatial information analysis and hazardous areas as well as land surveying. This study analyses the accuracy of the coordinate on Orthophoto and DSM height on slope area with high and low differences by using UAV images. As the result of this study, in the case of GCP on 2D orthophoto, the location error was not produced significantly. The vertical position of the DSM showed the highest accuracy when the height difference between GCPs is under 30m(RMSEZ=0.07m). The location of the GCPs was divided into approximately 10m, 20m, 30m, and 40m with analysis for each of the eight points of GCP and inspection points in general. This study expects that producing both horizontal accuracy of Orthophoto and vertical accuracy of DSM using UAV on the sloped area which similar to this research area will help in spatial information fields.

A Positioning Algorithm Using Virtual Reference for Accuracy Improvement in Relay-Based Navigation System (중계 기반 항법시스템에서 위치정확도 향상을 위한 가상 기준점 활용 측위 알고리즘)

  • Lee, Kyuman;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2102-2112
    • /
    • 2015
  • In this paper, we propose a new positioning scheme for accuracy improvement of Relay-based Navigation System. The conventional relay-based system occurs larger vertical error than horizontal one due to structural characteristics that positioning references are located toward same direction and a location of user is estimated by triangulation technique. In the proposed positioning scheme, the user position is reestimated using an additional virtual reference which is generated based on position information of reference stations in navigation signals and estimated initial user position. The nearest reference station from the estimated user position is selected as a virtual reference to minimize the effect of geometrical factor. The vertical error decreases by using reference points on multi planes, therefore, accurate positioning is possible than the conventional scheme. We demonstrated that the accuracy of a user is improved through simulation results.

Development of Optical Leveling System using Quarter Photodetector (4분할 위치검출소자를 활용한 광학식 레벨링 개발)

  • Kim, Byoung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.111-116
    • /
    • 2018
  • Recently, shape manufacturing method has been changed to a 3D printer. Since lamination type manufacturing method is the basis for forming a three-dimensional shape by repeated lamination, the horizontal accuracy of the lamination layer is very important. In the current paper, we have proposed a new leveling system to be installed in a large 3D printer. The light source was reflected from the water surface contained in the measuring device, and the inclination of the measuring device was measured from the light that entered into four regions of a quarter photodetector. The electrical signals generated differently according to the position of the beam spot incident on the quarter photodetector was acquired and compensated to be horizontal by using a motor mounted at the corner. Compared to a digital leveler, the newly developed leveling system gave errors of only 2 to 3%. This new device can be applied to various fields including the 3D printer in future.