• Title/Summary/Keyword: Horizontal flow

Search Result 1,200, Processing Time 0.028 seconds

Explicit Design of Uniformly-Rough Pipe on a Slope with Pumping Power (균일조도 동력경사관의 양해법 설계)

  • 유동훈;강찬수
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.163-176
    • /
    • 1996
  • When a pipe is deployed on a sloping bed, pumping power required for a discharge can be estimated immediately without any iteration process with an explicit form of a friction factor equation. Pumping power being given, however, traditional method requires an iteration process for the solution of discharge and pipe diameter even for the uniformly-rough pipe. You (1955b) has suggested explicit equations for the estimation of discharge and pipe diameter particularly for the cases of pipe on a slopintg bed without pumping and pipe on a horizontal bed with a pumping power. Based on his approach and previous results, the present researchers have developed explicit equations of discharge and pipe diameter for the general case of pipe on a sloping bed with a pumping power. The equations of boundary criteria are also presented in explicit way which render proper choice of various equations suitable for the flow condition between five characteristics. Verification studies are also carried out by applying the explicit equations to a practical example.

  • PDF

A Parametric Study of Sheet Pile Wall Near the Laterally Loaded Pile (횡방향 재하 말뚝 주변의 널말뚝에 관한 변수연구)

  • Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.35-43
    • /
    • 2012
  • Construction of sheet pile retaining walls in urban and coastal regions has resulted in sheet pile walls in close proximity to laterally loaded pile foundations. However, there is currently little information available in the literature to assist engineers for quantifying the response of sheet pile walls. This study provides a quantitative method for estimating sheet pile wall response due to loads imposed from a nearby laterally loaded pile. Three dimensional finite element analyses using commercial software, ABAQUS, were performed to assess the response of a sheet pile wall and nearby laterally loaded pile. The soils were modeled using Drucker-Prager constitutive model with associated flow rule, and the sheet pile wall and pile foundation were assumed to behave linear elastic. Four parameters were investigated: sheet pile wall bending stiffness, distance from the pile face to the wall, excavation depth in front of the sheet pile wall, and elastic modulus of the soil. Results from the analyses have been used to develop preliminary design charts and simple equations for estimating the maximum horizontal displacement and maximum bending moment in the sheet pile wall.

Coastal Circulation and Bottom Change due to Ocean Resort Complex Development

  • Kim, Pill-Sung;Lee, Joong-Woo;Kim, Jeong-Seok
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.585-590
    • /
    • 2012
  • On the basis of the potentials for the growth of local economy and the result of investigation of the ocean space development status, an ocean resort complex was proposed at the small harbor with a parallel beach in the east coast of Korea. As the development plan needs to reclaim the noticeable amount of coastal water area together with the applied shore facilities, it is necessary to analyze their impacts. Here, it was intended to analyze the coastal environment change such as water circulation and bottom change because of the development plan. A horizontal two-dimensional numerical model was applied to represent the combined impact of wind waves and tidal currents to sediment transport in that coastal region. Based on the result of 30 days tidal current simulations considering major four tidal components of $M_2$,$S_2$,$K_1$ and $O_1$ for the upper and lower boundaries and wind field data, bottom change was discussed. Flow velocities were not changed much at outer breakwater of Yangpo harbor. Bottom was eroded by maximum 1.7m after construction but some locations such as lee side of outer breakwater and some islets near the entrance shows isolated accretions. Although it needs more field observations for bottom change in the period of construction, the numerical calculation shows that there exist small impacts near the entrance area and coastal boundaries because of the development.

Experimental Study on Characteristics of Evaporation Heat Transfer of CO2 in a Smooth Tube (평활관에서 이산화탄소의 증발열전달 특성에 관한 실험연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.181-186
    • /
    • 2007
  • In order to investigate the heat transfer coefficient and pressure drop during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal smooth tube was performed. The experimental apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes ($200{\sim}1200\;kg/m^2s$), heat fluxes ($10{\sim}80\;kW/m^2$) and saturation temperatures ($-5{\sim}5^{\circ}C$). With the increase of quality, the evaporation heat transfer coefficient decreased. With the increase of heat flux, the evaporation heat transfer coefficient increased. Significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. With the increase of saturation temperature, the heat transfer coefficient increased. Pressure drop increased with the increase of mass flux and the decrease of saturation temperature.

Numerical Simulation of the Wind Speed Reduction by Coastal Forest Belts (해안림에 의한 풍속저감 효과의 수치적 모의)

  • Im, Sangjun;Lee, Sang Ho;Kim, Dongyeob;Hong, Youngjoo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.3
    • /
    • pp.98-105
    • /
    • 2009
  • The objective of this study is to develop numerical simulation model for analysing the wind speed reduction effect by coastal forest belts. The horizontally homogeneous turbulent flow equations, which are derived from the Reynolds-averaged Navier-Stokes method, both above the tree canopy and within the canopy were first formulated, and a first-order closure scheme with the capability of accounting the bulk momentum transport term within the canopy was employed. The averaged equations were solved numerically by finite difference method, FTCS (forward time centered space) scheme. The proposed model was also used to numerically investigate the effects of structural characteristic of forest belt on the wind speed. The effects of maximum leaf area density were evaluated, with the leaf area density of $1.0m^2/m^3$, $2.0m^2/m^3$, $3.0m^2/m^3$, and $4.0m^2/m^3$. Vertical distributions of leaf area, both uniform and varied distribution with a height, were also considered. A comparison of wind profile indicated that there was in good agreements between simulated and measured wind speed. Also, the results showed horizontal wind speed decreased under a height of the tree with increasing maximum leaf area density. In conclusion, in applications where computational efficiency and simplicity are desirable, the proposed numerical model has of great capability to determine the vertical turbulent momentum transport and wind profile in the costal forest belt.

Water Quality Modeling for Environmental Management in Chinhae.Masan Bay (진해.마산만의 환경관리를 위한 수질모델링)

  • 조흥연;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 1999
  • The horizontal two-dimensional model which can predict the long-term water quality(WQ) change is setup for the environmental management. For the model calibration and verification, we measured the pollutants load at 22 streams and the WQ at 16 stations monthly and/or seasonally in Chinhae . Masan Bay. The pollutants release rate from the sediment was also measured to consider the regionally different sediment pollution level. From the model application results, it is shown that the WQ concentrations in most of the regions adjacent to land and river inflow are considerably high, but rapidly decrease along the seaward direction. In Masan Bay, the particulate inflow-pollutants were substantially deposited and gradually contaminated the bottom sediment on account of the excessive pollutants load and flow stagnancy. Eutrophication in the effluent discharge region was also being slowly progressed by the inefficiently treated wastewater containing amount of Nand P constituents.

  • PDF

Effects of Baffle Structure Variation on Heat Transfer Performance in a Shell-Tube Heat Exchanger (배플 구조변경이 Shell-Tube 열교환기의 열전달성능에 미치는 영향)

  • Hou, Rong-Rong;Cho, Joeng-Kwon;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3014-3021
    • /
    • 2015
  • Shell-tube heat exchanger is widely applied in industrial field by easily manufacturing as to various size and flow patterns. In this study, by changing baffle's cut direction, tilt angle and rotational angle as well as by using SST (Shear Stress Transport) $k-{\omega}$ turbulence model in ANSYS FLUENT v.14, the heat transfer rate and pressure drop characteristics of inner shell will be analyzed to improve heat transfer ability. As a result of analysis, heat transfer performance according to cut direction of baffle has been improved with vertical model B and angle $45^{\circ}$ model C than horizontal model A. In addition, the tilt $10^{\circ}$ of the baffle and rotational angle $0^{\circ}-90^{\circ}-180^{\circ}-270^{\circ}$ of model D showed better result in heat transfer rate and pressure drop.

Micromorphological Features of Pan Horizon in the Soils Derived from Different Parent Materials

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.242-248
    • /
    • 2014
  • We have five soil series of pan soils in South Korea out of 391 series: Gangreung, Bugog, Yeongog, Jangweon, and Pogog. Productivity decreases in pan soils as pan horizons impede percolation and capillary rise of water and interrupt root extension. This study was performed to investigate pedogenic processes of pan soils mainly located in footslope and river terrace by analyzing physicochemical properties and soil micro-morphology. Korean pan soils belong to Alfisols, Ultisols, or Inceptisols and have udic or aquic soil moisture regime, mesic temperature regime, and mixed mineral substances. Texture of pan horizons selected for the present study was mainly silty clay loam with clay contents ranging from 26.3 to 45.3%. Bulk density of the pan horizons ranged from 1.4 to $2.1Mg\;m^{-3}$ and their soil structure were subangular or angular structure. In terms of micro-morphological structure, Bt horizon of Gangreung series was formed as platy and striated b-fabric structure possibly affected by uplift of coastal terrace following clay sedimentation by flood. Jangweon series showed micro-morphology of massive structure and crystallic b-fabric as macropores between coarse debris established by debris fall in slope were filled with silt-sized particles. The Bt horizons having massive structure and striated b-fabric in Yeongog, Pogog, and Bugog series implies that those horizons experienced horizontal mass flow after clay accumulation.

Crustal Structure of the Southern Part of Korea (한국(韓國) 남부지역(南部地域)의 지각구조(地殼構造))

  • Kim, Sung Kyun;Jung, Bu Hung
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 1985
  • Events detected by the KIER microearthquake network operated in the Southern Part of Korea for 265 days in 1982~1984 were reviewed, and some of them were identified to be a dynamite explosion from several construction sites. The purpose of the present work is to determine the crustal structure of the Southern Korea using the time-destance data obtained from such explosion seismic records. The time·distance data can be well explained by a crustal model composed of four horizontal layers of which thickness, p and s-wave velocity ($V_p$ and $V_s$) are characterized as follows. 1st layer (surface) ; 0~2km, $V_p=5.5km/sec$, $V_s=3.3km/sec$ 2nd layer (upper crust) ; 2~15km, $V_p=6.0km/sec$, $V_s=3.5km/sec$ 3rd layer (lower crust) ; 15~29km, $V_p=6.6km/sec$, $V_s=3.7km/sec$ 4th layer (upper mantle) ; 29km~ , $V_p=7.7km/sec$, $V_s=4.3km/sec$ The relatively shallow crust·mantle boundary and low $P_n$ velocity compared with the mean values for stable intraplate region are noteworthy. Supposedely, it is responsible for the high heat flow in the South-eastern Korea or an anomalous subterranean mantle. The mean $V_p/V_s$ ratio calculated from the relation between p-wave arrival and s-p arrival times appears to be 1.735 which is nearly equivalent to the elastic medium of ${\lambda}={\mu}$. However, the ratio tends to be slightly larger with the depth. The ratio is rather high compared with that of the adjacent Japanese Island, and the fact suggests that the underlying crust and upper mantle in this region are more ductile and hence the earthquake occurrences are apt to be interrupted. As an alternative curstal model, a seismic velocity structure in which velocities are successively increased with the depth is also proposed by the inversion of the time·distance data. With the velocity profile, it is possible to calculate a travel time table which is appropriate to determine the earthquake parameters for the local events.

  • PDF

Study on the Maneuvering Characteristics of a Container Ship with Twin Skegs (쌍축 컨테이너선의 조종성능 특성 연구)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Kim, Hyoung-Tae;Yu, Byeong-Seok;Lee, Suk-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, the attention to large container ships whose size is greater than 10,000 TEU container ship has been increased due to their increasing demand. The large container ship has twin skegs because of the engine capacity and large beam-draft ratio. In this paper, the maneuvering characteristics of a container ship with twin skegs were investigated through 4DOF(four degree of freedom) HPMM(Horizontal Planar Motion Mechanism) test and computer simulation. A mathematical model for maneuvering motion with 4DOF of twin skegs system was established to include effects of roll motion on the maneuvering motion. And to obtain roll-coupling hydrodynamic coefficients of a container ship, 4DOF HPMM system of MOERI which has a roll moment measurement system was used. HPMM tests were carried out for a 12,000 TEU class container ship with twin skegs at scantling load condition. Using the hydrodynamic coefficients obtained, simulations were made to predict the maneuvering motion. Rudder forces of twin-rudders were measured at the angles of drift and rudder. The neutral rudder angles with drift angles of ship was quite different with those of single skeg ship. So other treatment of flow straightening coefficient $\gamma_R$ was used and the simulation results was compared with general simulation result. The treatment of experimental result at static drift and rudder test was very important to predict the maneuverability of a container ship with twin skegs.