Experimental Study on Characteristics of Evaporation Heat Transfer of CO2 in a Smooth Tube

평활관에서 이산화탄소의 증발열전달 특성에 관한 실험연구

  • Published : 2007.12.31

Abstract

In order to investigate the heat transfer coefficient and pressure drop during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal smooth tube was performed. The experimental apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes ($200{\sim}1200\;kg/m^2s$), heat fluxes ($10{\sim}80\;kW/m^2$) and saturation temperatures ($-5{\sim}5^{\circ}C$). With the increase of quality, the evaporation heat transfer coefficient decreased. With the increase of heat flux, the evaporation heat transfer coefficient increased. Significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. With the increase of saturation temperature, the heat transfer coefficient increased. Pressure drop increased with the increase of mass flux and the decrease of saturation temperature.

본 연구에서는 이산화탄소의 증발열전달 특성을 이해하기 위해 질량유속, 열유속 기리고 포화온도를 변화시키면서 이산화탄소의 증발 열전달계수와 압력강하를 측정하였다. 질량유속과 열유속은 기존의 실험범위보다 크게 확장하여 내경 7.75 mm, 길이 5.0 m의 수평관에서 실험하였다. 실험장치는 시험부, 전원공급기, 히터, 칠러, 기어펌프, 유량계, 계측시스템 등으로 구성되었다. 건도가 증가할수록 증발 열전달계수는 감소하였으며, 이산화탄소의 증발 열전달계수는 질량유속보다 열유속에 더 민감함을 확인하였다. 또한 주어진 열유속과 포화온도에 따라 증발 열전달계수의 급격한 감소가 다르게 관찰되었다. 압력강하는 질량유속 증가에 대해 선형적인 증가를 보였지만 열유속 증가에 대한 압력강하의 증가효과가 크지 않았다.

Keywords

References

  1. Lorentzen, G; Pettersen, J. A new efficient and environmentally benign system for car air-conditioning, International Journal Refrigeration, 1992, 16(1), 4-12
  2. Lorentzen, G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament, International Journal Refrigeration, 1995, 18(3), 190-197 https://doi.org/10.1016/0140-7007(94)00001-E
  3. Zhao, Y.; Ohadi, M.M.; Dessiatoun, S.V.; Schuster, A.; McNair, A.; Radermacher, R.; Darabi, J. Evaporation heat transfer coefficients of ammonia and $CO_2$ inside a smooth tube, IIF-IIR Commission B1, with E1&E2, College Park, MD, 1997, 116-130
  4. Bredesen, A.; Hafner, A.; Pettersen, J.; Aflekt, K. Heat transfer and pressure drop for in-tube evaporation of $CO_2$, international conference on heat transfer issues in natural refrigerants, College Park, MD, 1997, 1-15
  5. Son, C.H. Heat transfer characteristics of supercritical cycle of carbon dioxide in a horizontal tube, Ph.D. Thesis, Pukyong National University, Pusan, Korea, 2004
  6. Choi, J.Y.; Kedzierski, A.M.; Domanski, A.P. A generalized pressure drop correlation for evaporation and condensation of alternative refrigerants in smooth tube and micro-fin tube, NISTIR 6333, 1999, 7-15
  7. Jung, D.S.; McLinden, M.; Radermacher, R.; Didion, D. A study of flow boiling heat transfer with refrigerants mixtures, Int. Heat and Mass Transfer, 1989, 32(9), 1751-1764 https://doi.org/10.1016/0017-9310(89)90057-4
  8. Cho, Y.S. An experimental study on the characteristics of evaporative heat transfer of carbon dioxide, M.S. Thesis, Seoul National University, Seoul, Korea, 2000
  9. Gungor, K.E.; Winterton, R.H.S. Simplified general correlation for flow saturated boiling and comparisons of correlations with data, Chem. Eng. Res, Des., 1987, 65, 148-156
  10. McLinden, M.O.; Klein, S.A; Lemmon, E.W.; Peskin, A.P. NIST thermodynamic properties and refrigerant mixtures database (REFPROP), Version 6.01, National Institute of Standards and Technology, Gaithersburg, MD, U.S.A, 1998
  11. Yoon, S.H. Studies on the characteristics of evaporation and supercritical gas cooling heat transfer of carbon dioxide, Ph.D. Thesis, Seoul National University, Seoul, Korea, 2002
  12. Yun, L. Convective boiling of carbon dioxide in mini tubes and micro-channels, Ph.D. Thesis, Korea University, Seoul, Korea, 2003