• Title/Summary/Keyword: Horizontal deformation

Search Result 485, Processing Time 0.026 seconds

A Study on the Container Yard of Mega-Float Offshore Structure Type. (부유체식 Container Yard에 관한 연구)

  • Park, Sung-Hyeon;Park, Sok-Chu;Ko, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • Recently, mega-float offshore structure is studied as of the effective utilization of the ocean space. And mega-float structure are now being considered for various applications such as floating airports. container yard, offshore cities and so on. This mega-float structure is relatively flexible compared with floating structures like large ship. When we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compare with horizontal. the analysis of the dynamic reponses as it receive regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In oder to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on the dynamic response of the floating structure are studied by use of numerical calculation.

Experimental Study on Load Transfer Characteristic by Adjacent Slope Excavation in a Jointed Rock Mass (절리암반에서 근접 사면굴착에 의한 하중전이특성에 대한 실험적 연구)

  • Lee, Jin-Wook;Lee, Sang-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.321-328
    • /
    • 2009
  • A optimal reinforcement in the joint rock slope excavation adjacent to an existing tunnel would be influenced by excavation distance from the tunnel, slope angel, and joint conditions but has been empirically determined so far. In this study, large scale model tests were conducted to find out the relationship between load translation on the excavation surface and bebavior of the tunnel according to excavation steps of the jointed rock slope. Consequently, two main parameters, joint dip and sloped angle were investigated in those model tests. From the test results, it was found that tunnel deformation was the largest one when the excavation of joints located closer to the tunnel crown or invert. Stability of the slope and the tunnel were varied in a certain excavation stage related to the angle of slope. In the future, based on results of this study the reinforcement method for the tunnel and slope safety in a jointed rock mass will be demonstrated.

Evaluation of the Soil-structure Interaction Effect on Seismically Isolated Nuclear Power Plant Structures (지반-구조물 상호작용이 면진 원전구조물의 지진응답에 미치는 영향 평가)

  • Lee, Eun-haeng;Kim, Jae-min;Joo, Kwang-ho;Kim, Hyun-uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • This study intends to evaluate the conservativeness of the fixed-base analysis as compared to the soil-structure interaction (SSI) analysis for the seismically isolated model of a nuclear power plant in Korea. To that goal, the boundary reaction method (BRM), combining frequency-domain and time-domain analyses in a twofold process, is adopted for the SSI analysis considering the nonlinearity of the seismic base isolation. The program KIESSI-3D is used for computing the reaction forces in the frequency domain and the program MIDAS/Civil is applied for the nonlinear time-domain analysis. The BRM numerical model is verified by comparing the results of the frequency-domain analysis and time-domain analysis for the soil-structure system with an equivalent linear base isolation model. Moreover, the displacement response of the base isolation and the horizontal response at the top of the structure obtained by the nonlinear SSI analysis using BRM are compared with those obtained by the fixed-base analysis. The comparison reveals that the fixed-base analysis provides conservative peak deformation for the base isolation but is not particularly conservative in term of the floor response spectrum of the superstructure.

Structural Design of a Mover considering the Thermal Analysis of a Stator Module (스테이터 모듈의 열해석을 고려한 이동체의 구조설계)

  • Lee, Jeong-Myeong;Han, Dong-Seop;Lee, Seong-Uk;Han, Geun-Jo;Lee, Gwon-Sun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.367-372
    • /
    • 2006
  • When we design a linear motor, the thermal behavior investigation is one of great important considerations with respect to uniform thrust force and thermal deformation of a linear motor. In this study, we conduct the research for the structural design of the linear motor for LMTT(Linear Motor-based Transfer Technology) which is the next generation of container horizontal transfer system in order to automate a container terminal. After the dimensions of main parts for a linear motor were set up, we carried out the thermal-structural analysis of the linear motor considering the thermal analysis of the stator module.

  • PDF

Performance Evaluation of Recycled Synthetic Resins Euro-form by Injection Modeling Method (합성수지계 사출성형 재생유로폼의 성능 평가에 관한 연구)

  • Chung, Byeung-Yeul;Lee, Hyun-Chul;Kim, Jun-Hee;Go, Seong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • Method or work type improvement is needed in relation to reducing cost and increasing efficiency by ensuring construction quality and reducing labor in the form work process. This would have a great influence on the entire construction process, and make the process of adopting materials and methods more rational and economic. Hence, this study aimed to develop a Synthetic Resins Euroform that could improve durability, water-proofing, sophistication, and organizational unity through the use of injection modeling. Accordingly, this paper first investigated various performance requirements and necessary techniques, and then verified feasibility by evaluating the physical safety and technical validity when it is applied to construction field. In addition, this study evaluated the constructability, safety performance, environmental performance, and systemic excellence in terms of maintaining convenience of Synthetic Resins Euroform. Moreover, to verify feasibility in the construction field, this study analyzed and evaluated the maximum stress by measuring the load and deformation of the space of the horizontal furring, which is attached to Euroform as an armature.

Effect of Heat Treatment on the Deformation and Fracture Behaviors of 3-ply Cu/Al/Cu Clad Metal (3층 Cu/Al/Cu 클래드재의 열처리온도에 따른 변형 및 파단거동)

  • Kim, In-Kyu;Ha, Jongsu;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.12
    • /
    • pp.939-948
    • /
    • 2012
  • A 3-ply clad metal consisting of aluminum and copper was fabricated by roll bonding process and the microstructures and mechanical properties of the roll-bonded and post-roll-bonding heat treated Cu/Al/Cu clad metal were investigated. A brittle interfacial reaction layer formed at the Cu/Al interfaces at and above $400^{\circ}C$. The thickness of the reaction layer increased from $12{\mu}m$ at $400^{\circ}C$ to $28{\mu}m$ at $500^{\circ}C$. The stress-strain curves demonstrated that the strength decreased and the ductility increased with heat treatment up to $400^{\circ}C$. The clad metal heat treated at $300^{\circ}C$ with no indication of a reaction layer exhibited an excellent combination of the strength and ductility and no delamination of layers up to final fracture in the tensile testing. Above $400^{\circ}C$, the ductility decreased rasxpidly with little change of strength, reflecting the brittle nature of the intermetallic interlayers. In Cu/Al/Cu clad heat treated above $400^{\circ}C$, periodic parallel cracks perpendicular to the stress axis were observed at the interfacial reaction layer. In-situ optical microscopic observation revealed that cracks were formed in the Cu layer due to the strain concentration in the vicinity of horizontal cracks in the intermetallic layer, promoting the premature fracture of Cu layer. Vertical cracks parallel to the stress axis were also formed at 15% strain at $500^{\circ}C$, leading to the delamination of the Cu and Al layers.

Combination rules and critical seismic response of steel buildings modeled as complex MDOF systems

  • Reyes-Salazar, Alfredo;Valenzuela-Beltran, Federico;de Leon-Escobedo, David;Bojorquez-Mora, Eden;Barraza, Arturo Lopez
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.211-238
    • /
    • 2016
  • The Maximum seismic responses of steel buildings with perimeter moment resisting frames (MRF), modeled as complex MDOF systems, are estimated for several incidence angles of the horizontal components and the critical one is identified. The accuracy of the existing rules to combine the effects of the individual components is also studied. Two and three components are considered. The critical response does not occur for principal components and the corresponding incidence angle varies from one earthquake to another. The critical response can be estimated as 1.40 and 1.10 times that of the principal components, for axial load and interstory shears, respectively. The rules underestimate the axial load but reasonably overestimate the shears. The rules are not always inaccurate in the estimation of the combined response for correlated components. On the other hand, totally uncorrelated (principal) components are not always related to an accurate estimation. The correlation of the individual effects (${\rho}$) may be significant, even for principal components. The rules are not always associated to an inaccurate estimation for large values of ${\rho}$, and small values of ${\rho}$ are not always related to an accurate estimation. Only for perfectly uncorrelated harmonic excitations and elastic analysis of SDOF systems, the individual effects of the components are uncorrelated and the rules accurately estimate the combined response. The degree of correlation of the components, the type of structural system, the response parameter under consideration, the location of the structural member and the level of structural deformation must be considered while estimating the level of underestimation or overestimation.

Feasibility study on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell

  • Chung, Myungjin;Kim, Jongmin;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.571-582
    • /
    • 2019
  • This study aimed to assess the feasibility on the wide and long 9%Ni steel plate for use in the LNG storage inner tank shell. First, 5-m-wide and 15-m-long 9%Ni steel plates were test manufactured from a steel mill and specimens taken from the plates were tested for strength, toughness, and flatness to verify their performance based on international standards and design specifications. Second, plates with a thickness of 10 mm and 25 mm, a width of 4.8~5.0 m, and a length of 15 m were test fabricated by subjecting to pretreatment, beveling, and roll bending resulting in a final width of 4.5~4.8 m and a length of 14.8m with fabrication errors identical to conventional plates. Third, welded specimens obtained via shield metal arc welding used for vertical welding of inner tank shell and submerged arc welding used for horizontal welding were also tested for strength, toughness and ductility. Fourth, verification of shell plate material and fabrication was followed by test erection using two 25-mm-thick, 4.5-m-wide and 14.8-m-long 9%Ni steel plates. No undesirable welding failure or deformation was found. Finally, parametric design using wide and long 9%Ni steel plates was carried out, and a simplified design method to determine the plate thickness along the shell height was proposed. The cost analysis based on the parametric design resulted in about 2% increase of steel weight; however, the construction cost was reduced about 6% due to large reduction in welding work.

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Preliminary Study (GREAT 셀을 이용한 삼축압축시험의 수치모사: 예비연구)

  • Park, Dohyun;Park, Chan-Hee
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • The Geo-Reservoir Experimental Analogue Technology (GREAT) cell was designed to recreate the thermal-hydro-mechanical conditions of deep subsurface in the laboratory. This apparatus can generate a polyaxial stress field using lateral loading elements, which rotate around the longitudinal axis of a sample and is capable of performing a fluid flow test for samples containing fractures. In the present study, numerical simulations were carried out for triaxial compression tests using the GREAT cell and the mechanical behavior of samples under different conditions of lateral loading was investigated. We simulated an actual case, in which triaxial compression tests were conducted for a polymer sample without fractures, and compared the results between the numerical analysis and experiment. The surface strain (circumferential strain) of the sample was analyzed for equal and non-equal horizontal confining pressures. The results of the comparison showed a good consistency. Additionally, for synthetic cases with a fracture, we investigated the effect of the friction and type of fracture surface on the deformation behavior.

Characteristic study of bell-shaped anchor installed within cohesive soil

  • Das, Arya;Bera, Ashis Kumar
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.497-509
    • /
    • 2021
  • A large deformation FEM (Finite Element Method) based numerical analysis has been performed to study the behaviour of the bell-shaped anchor embedded in undrained saturated (cohesive) soil with the help of finite element based software ABAQUS. A typical model anchor with bell-diameter of 0.125 m, embedded in undrained saturated soil with varying cohesive strength (from 5 kN/m2 to 200 kN/m2) has been chosen for studying the characteristic behaviour of the bell-shaped anchor installed in cohesive soil. Breakout factors have been evaluated for each case and verified with the results of experimental model tests for three different types of soil samples. The maximum value of breakout factor was found as about 8.5 within a range of critical embedment ratio of 2.5 to 3. An explicit model has been developed to estimate the breakout factor (Fc) for uplift capacity of bell-shaped anchor within clay mass in terms of H/D ratio (embedment ratio). It was also found that, the ultimate uplift capacity of the anchor increases with the increase of the value of cohesive strength of the soil and H/D ratio. The empirical equation developed in the present investigation is usable within the range of cohesion value and H/D ratio from 5 kN/m2 to 200 kN /m2 and 0.5 to 3.0 respectively. The proposed model has been validated against data obtained from a series of model tests carried out in the present investigation. From the stress-profile analysis of the soil mass surrounding the anchor, occurrence of stress concentration is found to be generated at the joint of anchor shaft and bell. It was also found that the vertical and horizontal stresses surrounding the anchor diminish at about a distance of 0.3 m and 0.15 m respectively.