• Title/Summary/Keyword: Horizontal augmentation

Search Result 64, Processing Time 0.03 seconds

Vertical and Horizontal Ridge Augmentation Using Autogenous Tooth Bone Graft Materials: Case Report (자가치아골이식재를 이용한 치조능 수직 및 수평증대술: 증례보고)

  • Kim, Young-Kyun;Kim, Su-Gwan;Um, In-Woong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.2
    • /
    • pp.166-170
    • /
    • 2011
  • Horizontal and vertical ridge augmentation was performed using autogenous tooth bone graft block and powder in 44-year old male patient. Excellent bony healing was obtained 2~4 months after ridge augmentation. Implant treatment was performed successfully.

Ridge Augmentation Using Vascularized Interpositional Periosteal- Connective Tissue (VIP-CT) in Conjunction with Anterior Implant Placement in Maxilla : Report of Three Cases (상악 전치부의 임플란트 식립과 관련하여 혈관개재골막결합조직판막술을 이용한 치조제증대술: 3가지 증례보고)

  • Kim, Yun-Sang
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.207-214
    • /
    • 2008
  • Purpose: The aim of augmentation of the alveolar ridge is to restore absorbed alveolar ridges for future implant site or esthetic prosthodontic restoration. The present clinical report describes the anterior maxillary augmentation cases using a soft tissue rotated palatal flap, and considers various problems of before and after surgery. Method: First & second patients were treated by vascularized interpositional periosteal-connective tissue(VIP-CT) flap for horizontal soft tissue augmentation. Especially second patient was progressed with bone grafting at the same time. Third patient was treated by the same flap with bone graft and implant placement in single tooth missing premaxillary area. Result: The obtained horizontal augmentation width measured $0.5{\sim}2.7\;mm$. Conclusion: This technique constitutes a viable approach for augmentation the anterior sector of alveolar ridge with the placement of dental implants. But it needs correct diagnosis preparation and careful surgery skill.

Analysis of the power augmentation mechanisms of diffuser shrouded micro turbine with computational fluid dynamics simulations

  • Jafari, Seyed A.;Kosasih, Buyung
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.199-217
    • /
    • 2014
  • Reported experimental and computational fluid dynamic (CFD) studies have demonstrated significant power augmentation of diffuser shrouded horizontal axis micro wind turbine compared to bare turbine. These studies also found the degree of augmentation is strongly dependent on the shape and geometry of the diffuser such as length and expansion angle. However study flow field over the rotor blades in shrouded turbine has not received much attention. In this paper, CFD simulations of an experimental diffuser shrouded micro wind turbine have been carried out with the aim to understand the mechanisms underpinning the power augmentation phenomenon. The simulations provide insight of the flow field over the blades of bare wind turbine and of shrouded one elucidating the augmentation mechanisms. From the analysis, sub-atmospheric back pressure leading to velocity augmentation at the inlet of diffuser and lowering the static pressure on blade suction sides have been identified as th dominant mechanisms driving the power augmentation. And effective augmentation was achieved for ${\lambda}$ above certain value. For the case turbine it is ${\lambda}$ greater than ${\approx}2$.

HORIZONTAL AUGMENTATION WITH AUTOGENOUS BLOCK BONE AND IMPLANT PLACEMENT (자가 블록골을 이용한 치조골수평증강술과 임프란트 식립)

  • Ahn, Ji-Yeon;Kim, Young-Kyun;Yun, Pil-Young;Hwang, Jung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.5
    • /
    • pp.444-450
    • /
    • 2007
  • In general, labiolingual or buccolingual widths of residual alveolar bone are insufficient in edentulous area, because of alveolar resorption. Horizontal augmentation is bone graft procedure with a view to reinforcing horizontally insufficient bone quantity for installation of implants. The standard method is taking appropriate amount of block bone from intraoral or extraoral autogenous bone, and solid fixation with screws or mini-plate on labial or buccal side of residual alveolar bone. The purpose of this study is to discuss clinical usefulness of horizontal augmentation with autogenous block bone by observation and analysis of course of 41 implants installed to 12 patients by horizontal augmentation in Seoul National University Bundang Hospital from July, 2002 to December, 2005. The mean age of patients is 52.7, from 19 to 70, and the number of men and women is each 2 and 10. Block bone was taken from symphysis, body, ramus of mandible or iliac bone. And 6 types of implants were installed simultaneously or not, the diameters of implants are from 3.3 to 5.5mm, the lengths are from 8 to 15mm. The operator added artificial bone grafting material and optionally covered with membrane. The mean periods of observation after operation and final prosthetics were 28.6 and 17.0 months. As a result, 40 among 41 implants survived, the survival rate was 97.6%. Average 0.9mm crestal resorption was observed at final point of time by periapical view of each patients. Major complication related to the procedure was numbness in 7 patients.

Horizontal ridge augmentation with porcine bone-derived grafting material: a long-term retrospective clinical study with more than 5 years of follow-up

  • Jin-Won Choi;Soo-Shin Hwang;Pil-Young Yun;Young-Kyun Kim
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.49 no.6
    • /
    • pp.324-331
    • /
    • 2023
  • Objectives: The purpose of this study was to evaluate the outcomes of implants placed in horizontally augmented alveolar ridges using porcine bone grafts and to investigate the long-term stability of the porcine bone grafts. Materials and Methods: A retrospective analysis was conducted on 49 sites that underwent horizontal ridge augmentation using porcine bone grafts and implant placement with a follow-up period longer than 5 years. Furthermore, additional analysis was conducted on 24 sites where porcine bone grafts were used exclusively for horizontal ridge augmentation and implant placement. Results: The mean follow-up period after prosthesis loading was 67.5 months, with a mean marginal bone loss of 0.23 mm at 1 year and a cumulative mean marginal bone loss of 0.40 mm over the entire follow-up period. Of the 49 implants, 2 were lost and 3 did not meet the success criteria, resulting in a survival rate of 95.9% and a success rate of 89.8%. In 24 sites, the mean marginal bone loss was 0.23 mm at 1 year and 0.41 mm at 65.8 months, with 100% survival and success rates. Conclusion: Porcine bone grafts can be successfully used in horizontal ridge augmentation for implant placement in cases of ridges with insufficient horizontal width.

Clinical evaluation of ridge augmentation using autogenous tooth bone graft material: case series study

  • Lee, Ji-Young;Kim, Young-Kyun;Yi, Yang-Jin;Choi, Joon-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.4
    • /
    • pp.156-160
    • /
    • 2013
  • Objectives: Interest in bone graft material has increased with regard to restoration in cases of bone defect around the implant. Autogenous tooth bone graft material was developed and commercialized in 2008. In this study, we evaluated the results of vertical and horizontal ridge augmentation with autogenous tooth bone graft material. Materials and Methods: This study targeted patients who had vertical or horizontal ridge augmentation using AutoBT from March 2009 to April 2010. We evaluated the age and gender of the subject patients, implant stability, adjunctive surgery, additional bone graft material and barrier membrane, post-operative complication, implant survival rate, and crestal bone loss. Results: We performed vertical and horizontal ridge augmentation using powder- or block-type autogenous tooth bone graft material, and implant placement was performed on nine patients (male: 7, female: 2). The average age of patients was $49.88{\pm}12.98$ years, and the post-operative follow-up period was $35{\pm}5.31$ months. Post-operative complications included wound dehiscence (one case), hematoma (one case), and implant osseointegration failure (one case; survival rate: 96%); however, there were no complications related to bone graft material, such as infection. Average marginal bone loss after one-year loading was $0.12{\pm}0.19$ mm. Therefore, excellent clinical results can be said to have been obtained. Conclusion: Excellent clinical results can be said to have been obtained with vertical and horizontal ridge augmentation using autogenous tooth bone graft material.

Alveolar ridge augmentation for implant placement (임플란트식립을 위한 치조제증대술)

  • Yu, Sang-Joun
    • The Journal of the Korean dental association
    • /
    • v.57 no.12
    • /
    • pp.768-777
    • /
    • 2019
  • Alveolar bone resorption are unpredictable and always occur after tooth extraction. Such bone resorption causes insufficient alveolar ridge which make implant placement difficult. There are many techniques to increase the alveolar ridge. Representative procedures include ridge split, guided bone regeneration, bone graft using autogenous block bone, and alveolar distraction. In each procedure, there are indications and complications. Depending on the shape and the width of bone defects, we can choose procedures for horizontal bone augmentation and vertical bone augmentation.

  • PDF

THE HISTOLOGIC STUDY OF BONE HEALING AFTER HORIZONTAL RIDGE AUGMENTATION USING AUTO BLOCK BONE GRAFT (자가골 블럭 이식을 이용한 수평골 증강술시 이식골의 치유)

  • Oh, Jae-Kwen;Choi, Byung-Jun;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.207-215
    • /
    • 2009
  • Purpose: The aim of the present study is to evaluate the long term bone healing after horizontal ridge augmentation using auto block bone graft for implant installation timing. Materials and Methods: Five Beagle dogs(which were 14 months old and weighted approximately 10kg). In surgery 1(extraction & bone defect), premolars(P2, P3,P4) were extracted and the buccal bone plate was removed to create a horizontally defected ridge. After three months healing, in surgery 2(ridge augmentation). Auto block bone grafts from the mandibular ramus were used in filling the bone defects were fixed with stabilizing screws. The following fluorochrome labels were given intravenously to the beagle dogs: oxytetracycline 1week after the surgery, alizarin red 4 weeks after the surgery, calcein blue 8 weeks after the surgery. The tissue samples were obtained from the sacrificed dogs of 1, 4, 8, 12, 16 weeks after the surgery. Non-decalcified sections were prepared by resin embedding and microsection to find thickness of $10{\mu}m$ for the histologic examination and analysis. Results: 1. We could achieve the successful reconstruction of the horizontal bone defect by auto block bone graft. The grafted bone block remained stable morohologically after 16 weeks of the surgery. 2. In the histologic view. We observed osteoid tissue from the sample $4^{th}$ week sample and active capillary reconstruction in the grafted bone from the $12^{th}$ week sample. Healing procedures of auto bone grafts were compared to that of the host bone. 3. Bone mineralization could be detected from the $8^{th}$ week sample. 4. Fluorochrome labeling showed active bony changes and formation at the interface of the host bone and the block graft mainly. Bony activation in the grafted bone could be seen from the $4^{th}$ week samples. Conclusions: Active bone formation and remodeling between the grafted bone and host bone can be seen through the revascularization. After the perfect adhesion to host bone, Timing of successful implant installation can be detected through the ideal ridge formation by horizontal ridge augmentation.

Ridge augmentation in implant dentistry

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.3
    • /
    • pp.211-217
    • /
    • 2020
  • In patients with insufficient bone height and width, the successful placement of dental implants is difficult with regards to maintaining an ideal pathway and avoiding important anatomical structures. Vertical and/or horizontal ridge augmentation may be necessary using various bone substitute materials and bone graft procedures. However, effective one-wall reconstruction has been challenging due to its poor blood supply and insufficient graft stability. In this paper, the authors summarize current evidence-based literature based on the author's clinical experience. Regarding bone substitutes, it is advantageous for clinicians to select the types of bone substitutes including autogenous bone. The most important consideration is to minimize complications through principle-based ridge augmentation surgery. Ridge augmentation should be decided with complete consent of the patients due to the possible disadvantages of surgery, complications, and unpredictable prognosis.

Periosteum-attached Autogenous Block Bone Graft with Simultaneous Implant Placement on the Anterior Maxilla: A Case Report

  • Seung-Hyun Park;Jongseung Kim;Ui-Won Jung;Jae-Kook Cha
    • Journal of Korean Dental Science
    • /
    • v.17 no.2
    • /
    • pp.64-74
    • /
    • 2024
  • This case report presents the long-term radiographic outcomes of a novel approach for simultaneous lateral augmentation and implant surgery. A 60-year-old male patient who required tooth extraction of the maxillary central and lateral incisors due to trauma visited the clinic. After tooth extraction, severe horizontal and vertical deficiencies occurred owing to atrophy of the alveolar ridge, and a simultaneous guided bone regeneration (GBR) procedure was planned along with the installation of two implants. In the present case, a modification of the conventional 'sandwich technique' was used by placing the mixture of autogenous bone chips and xenografts at the outermost layer to maximize the osteogenic potential at the coronal part of augmentation while applying solely xenografts at the inner layer. To enhance volumetric stability, an autogenous block of periosteum harvested from the maxillary tuberosity was incorporated between the two layers. Cone-beam computed tomography was performed at baseline and 3 years after the surgery to compare radiographic outcomes. Dehiscence after fixture installation was successfully observed at the re-entry of the surgery site. Three years after the surgery, average horizontal bone gains of 6.11 mm and 4.12 mm were observed in the maxillary central and lateral incisor areas, respectively. Healthy peri-implant mucosa and well maintained marginal bone levels were observed 8 years after the surgery, meeting the criteria for implant success. The findings of this case suggest that a substantial amount of horizontal bone gain can be obtained with a layered approach using autogenous bone materials and xenografts, highlighting the advantages of incorporating autogenous blocks into the simultaneous GBR procedure.