• Title/Summary/Keyword: Horizontal Resolution

Search Result 339, Processing Time 0.026 seconds

Plane-wave Full Waveform Inversion Using Distributed Acoustic Sensing Data in an Elastic Medium (탄성매질에서의 분포형 음향 센싱 자료를 활용한 평면파 전파형역산)

  • Seoje, Jeong;Wookeen, Chung;Sungryul, Shin;Sumin, Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.214-216
    • /
    • 2022
  • Distributed acoustic sensing (DAS), an increasingly growing acquisition technique in the oil and gas exploration and seismology fields, has been used to record seismic signals using optical cables as receivers. With the development of imaging methods for DAS data, full waveform inversion (FWI) is been applied to DAS data to obtain high-resolution property models such as P- and S-velocity. However, because the DAS systems measure strain from the phase distortion between two points along optical cables, DAS data must be transformed from strain to particle velocity for FWI algorithms. In this study, a plane-wave FWI algorithm based on the relationship between strain and horizontal particle velocity in the plane-wave assumption is proposed to apply FWI to DAS data. Under the plane-wave assumption, strain equals the horizontal particle velocity, which is scaled by the velocity at the receiver position. This relationship was confirmed using a numerical experiment. Furthermore, 4-layer and modified Marmousi-2 velocity models were used to verify the applicability of the proposed FWI algorithm in various survey environments. The proposed FWI was implemented in land and marine survey environments and provided high-resolution P- and S-velocity models.

Ferroelastic Domain and Refractive Property of $Gd_{2}(MoO_{4})_{3}$ Single Crystal ($Gd_{2}(MoO_{4})_{3}$ 단결정의 강탄성구역과 굴절률특성)

  • Son, Jong-Yoon;Lee, Chan-Ku;Lee, Su-Dae;Kim, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.98-102
    • /
    • 2002
  • We investigated domains and conoscope under the polarizing microscope and the index of refraction on the c-plate GMO which has the ferroelectric and ferroelastic phase at room temperature. To observed the change of refractive index in connection with domain, we developed an apparatus to obtain the refractive index by measuring the Brewster's angle. The resolution of the minimum rotation angle of this apparatus is $0.001^{\circ}$. To obtain the refractive index map on the sample, the moving distance of XY stage loaded sample holder is 60 mm and the minimum moving distance is 0.002 mm. Also, To obtain the indicatrix for single crystal, vertical turntable with sample holder and XY stage was loading on horizontal turntable. The minimum resolution angle of this vertical turntable is $0.001^{\circ}$. We measured the refractive index of transparent materials such as ferroelectrics. In the case of $Gd_{2}(MoO_{4})_{3}$, the Brewster angle is $62.11^{\circ}$ and then, the refractive index is 1.8895 by using He-Ne Laser. Also the refractive distribution of c-plate GMO was obtained with $400{\mu}m{\times}120{\mu}m$.

  • PDF

Study on the Coverage by COMS OCI FOV

  • Kang C. H.;Seo S. B.;Lim H. S.;Park D. J.;Ahn S. I.;Koo I. H.;Hyun D. H.;Yang H. M.;Choi H. J.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.336-339
    • /
    • 2004
  • Communication, Ocean and Meteorological Satellite (COMS) has been developed by Korean Aerospace Research Institute (KARI) since 2003. Ocean Color Imager (OCI) is the one of COMS payloads, which will monitor the marine environment around Korean peninsula routinely with the intermediate resolution. But considering COMS is to be located in the geostationary orbit, required geographical coverage is not positioned in the nadir direction of COMS but in specific location with horizontal and vertical offsets from the nadir. In this study, coverage by OCI Field Of View (FOV) is analyzed. First of all, OCI is modeled as the sensor which is a $2,500{\times}2,500$ sized 2-D CCD and the pixel resolution is about 500m. And then, OCI is simulated to be controlled to target the required coverage accurately. As a result of it, coverage by OCI FOV is determined. Finally, all coverages by OCI FOV are mapped.

  • PDF

Wavelet Based Intelligence image Watermarking Using Machine Vision of LabVIEW (LabVIEW의 Machine Vision을 이용한 웨이블릿 기반 지능형 이미지 Watermarking)

  • 송윤재;강두영;김형권;안태천
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.521-524
    • /
    • 2004
  • Recently, acgis of authentication and crcator's copyright has become a matter of great concern by the diffusion of multimedia technique and the growth of the internet and the easily duplicated property of digital data. Consequently, many active researches have been made to protect copyright and to assure integrity by inserting watermark into the digital data. In this paper, watermark is repealed through the entire image and adapted to the content of the image. Achieved by an underlying process of transforming the digital image to the frequency domain by wavelet transform, which has three (vertical, horizontal, diagonal) directions and Multi-resolution features, and then choosing frequency area inferior to the human perceptibility and significant for invisible and robust watermark. We realize wavelet based image watermarking using Machine Vision of LabVIEW.

  • PDF

Sensitivity Evaluation of Wind Fields in Surface Layer by WRF-PBL and LSM Parameterizations (WRF 모델을 이용한 지표층 바람장의 대기경계층 모수화와 지면모델 민감도 평가)

  • Seo, Beom-Keun;Byon, Jae-Young;Choi, Young-Jean
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.319-332
    • /
    • 2010
  • Sensitivity experiments of WRF model using different planetary boundary layer (PBL) and land surface model (LSM) parameterizations are evaluated for prediction of wind fields within the surface layer. The experiments were performed with three PBL schemes (YSU, Pleim, MYJ) in combination with three land surface models (Noah, RUC, Pleim). The WRF model was conducted on a nested grid from 27-km to 1-km horizontal resolution. The simulations validated wind speed and direction at 10 m and 80 m above ground level at a 1-km spatial resolution over the South Korea. Statistical verification results indicate that Pleim and YSU PBL schemes are in good agreement with observations at 10 m above ground level, while the MYJ scheme produced predictions similar to the observed wind speed at 80 m above ground level. LSM comparisons indicate that the RUC model performs best in predicting 10-m and 80-m wind speed. It is found that MYJ (PBL) - RUC (LSM) simulations yielded the best results for wind field in the surface layer. The choice of PBL and LSM parameterization will contribute to more accurate wind predictions for air quality studies and wind power using WRF.

Variability of Future Wind and Solar Resource Over the Korean Peninsula Based on Climate Change Scenario (기후변화 시나리오에 근거한 한반도 미래 풍력·태양-기상자원 변동성)

  • Byon, Jae-Young;Kim, Yumi;Choi, Byoung-Choel
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.29-39
    • /
    • 2014
  • This study examines the future variability of surface wind speed and solar radiation based on climate change scenario over the Korean Peninsula. Climate change scenarios used in this study are RCP 4.5 and 8.5 with a 12.5 km horizontal resolution. Climate change scenario RCP 4.5 and 8.5 reproduce the general features of wind speed over the Korean Peninsula, such as strong wind speed during spring and winter and weak wind speed during summer. When compared with the values of wind speed and solar radiation of the future, they are expected to decrease current wind and solar resource map. Comparing the resource maps using RCP 4.5 and 8.5 scenarios, wind speed and solar radiation decrease with increasing greenhouse gas concentration. Meteorological resource maps of future wind and solar radiation should be improved with high resolution for the industrial application.

Design of Spindle Motor-chuck System for Ultra High Resolution (나노급 정밀 구동을 위한 스핀들 모터-척 시스템 설계)

  • Kim, Kyung-Ho;Kim, Ha-Yong;Shin, Bu-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.614-619
    • /
    • 2009
  • The STW(servo track writing) system which is the process of writing servo signals on disks before assembling in drives uses the spindle motor-chuck mechanism to realize low cost because the spindle motor-chuck mechanism has merit which can simultaneously write multi-disk by piling up disks in hub. Therefore, when the spindle motor-chuck mechanism of horizontal type operates in high rotation speed it is necessary to reduce the effect of RRO(repeatable run-out) and NRRO(non-repeatable run-out) to achieve the high precision accuracy of nano-meter level during the STW process. In this paper, we analyzed that the slip in assembly surfaces can be caused by the mechanical tolerance and clamping force in hub-chuck mechanism and can affect NRRO performance. We designed springs for centering and clamping considering centrifugal force by the rotation speed and assembly condition. The experimental result showed NRRO performance improves about 30 % than case of weak clamping force. The result shows that the optimal design of the spindle motor-chuck mechanism can effectively reduce the effect of NRRO and RRO in STW process.

Database Construction of High-resolution Daily Meteorological and Climatological Data Using NCAM-LAMP: Sunshine Hour Data (NCAM-LAMP를 이용한 고해상도 일단위 기상기후 DB 구축: 일조시간 자료를 중심으로)

  • Lee, Su-Jung;Lee, Seung-Jae;Koo, Ja-seob
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.135-143
    • /
    • 2020
  • Shortwave radiation and sunshine hours (SHOUR) are important variables having many applications, including crop growth. However, observational data for these variables have low horizontal resolution, rendering its application to related research and decision making on f arming practices challenging. In the present study, hourly solar radiation data were physically generated using the Land-Atmosphere Modeling Package (LAMP) at the National Center f or Agro-Meteorology, and then daily SHOUR fields were calculated through statistical downscaling. After data quality evaluation, including case studies, the SHOUR data were added to the existing publically accessible LAMP daily database. The LAMP daily dataset, newly updated with SHOUR, has been provided operationally as input data to the "Gyeonggi-do Agricultural Drought Prediction System," which predicts agricultural weather disasters and field crop growth status.

EM Tomography by Extended Born Approximations (확장된 Born 근사에 의한 EM 토모그래피)

  • Cho In-Ky;Sim Hyun-Mi
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.155-160
    • /
    • 1998
  • EM tomography technique has been developed. The algorithm used the extended Born approximations for forward modeling and reconstructed a conductivity image by a smoothness constraint least squares inversion method. Observed data, the vertical components of secondary magnetic fields, were simulated with the 3-D integral equation code. The results showed that the location of anomalous body could be imaged very well, but conductivity of the body was lower than real one and the vertical resolution was much higher than the horizontal resolution.

  • PDF

A Hierarchical Stereo Matching Algorithm Using Wavelet Representation (웨이브릿 변환을 이용한 계층적 스테레오 정합)

  • 김영석;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.74-86
    • /
    • 1994
  • In this paper a hierarchical stereo matching algorithm to obtain the disparity in wavelet transformed domain by using locally adaptive window and weights is proposed. The pyramidal structure obtained by wavelet transform is used to solve the loss of information which the conventional Gaussian or Laplacian pyramid have. The wavelet transformed images are decomposed into the blurred image the horizontal edges the vertical edges and the diagonal edges. The similarity between each wavelet channel of left and right image determines the relative importance of each primitive and make the algorithm perform the area-based and feature-based matching adaptively. The wavelet transform can extract the features that have the dense resolution as well as can avoid the duplication or loss of information. Meanwhile the variable window that needs to obtain precise and stable estimation of correspondense is decided adaptively from the disparities estimated in coarse resolution and LL(low-low) channel of wavelet transformed stereo image. Also a new relaxation algorithm that can reduce the false match without the blurring of the disparity edge is proposed. The experimental results for various images show that the proposed algorithm has good perfpormance even if the images used in experiments have the unfavorable conditions.

  • PDF