• 제목/요약/키워드: Horizontal Members

검색결과 200건 처리시간 0.019초

강섬유보강 콘크리트와 일반 콘크리트 합성보의 전단강도 (Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams)

  • 김철구;박홍근;홍건호;강수민
    • 콘크리트학회논문집
    • /
    • 제27권5호
    • /
    • pp.501-510
    • /
    • 2015
  • 최근 프리캐스트 콘크리트에 현장타설 콘크리트를 타설하는 복합화 공법의 사용이 증가하고 있다. 강섬유 콘크리트는 습식공법에서는 시공성 문제로 적용이 어렵지만, 공장에서 선 제작이 이뤄지는 프리캐스트 부재에는 충분히 사용 가능하다. 강섬유 콘크리트가 복합화 공법에 사용되면 서로 재료적 특성이 다른 강섬유 콘크리트와 일반 콘크리트 합성단면의 전단강도 산정법이 문제가 되고 있다. 하지만 현행 기준은 명확한 기준을 제시하지 못하고 있는 실정이다. 따라서 강섬유 콘크리트가 사용된 합성 부재의 전단강도 실험을 통해 강섬유 콘크리트가 합성단면의 전단강도에 미치는 영향을 살펴보았다. 실험 변수로는 합성단면적비와 전단철근비를 고려하였다. 실험결과를 살펴보면, 강섬유가 인장대에 보강된 경우 강섬유 보강 단면적에 비례하여 전단강도가 증가하였다. 하지만 강섬유의 영향으로 인해 계면에서 수평전단파괴가 쉽게 발생하기 때문에 최소 수평전단철근이 반드시 필요하다.

콘크리트 합성부재의 수평 전단강도 평가 (Evaluation of Horizontal Shear Strength for Concrete Composite Members)

  • 서정일;박홍근;홍건호;강수민;김철구
    • 콘크리트학회논문집
    • /
    • 제28권4호
    • /
    • pp.407-417
    • /
    • 2016
  • 본 연구에서는 콘크리트 합성부재의 합리적인 수평전단강도 평가를 위하여 합성보 전단 실험을 수행하였다. 실험 변수로는 PC부재의 유형(PC+RC, PSC+RC, SFRC+RC), 고강도 콘크리트 대비 저강도 콘크리트의 면적비, 전단철근비를 고려하였다. 실험 결과, 수평 균열 발생 시 부재 내력이 감소하였으며 전단철근의 기여도와 계면 상태가 수평전단강도에 영향을 주는 것으로 나타났다. 기존 실험 결과를 실험 방법 및 계면 상태로 분류하여 현행구조기준과 비교하였으며 분석결과를 바탕으로 개선된 설계방안을 제안하였다.

리더와 구성원의 리더십 이중주: 팀에서 리더의 변혁적 리더십과 구성원의 변혁적 리더십의 상호작용 (A Duet of Leadership by Leader and Member: The Synergy Effects of Leader Transformational Leadership and Transformational Leadership Shared by Members on Team Effectiveness)

  • 김문주;이지예;윤정구
    • 지식경영연구
    • /
    • 제14권3호
    • /
    • pp.55-85
    • /
    • 2013
  • The present study examines the effects of transformational leadership exercised by team leader and transformational leadership shared by team members on team creativity and team performance at the team level. A growing body on leadership research highlights the role of team leadership in work organizations. In team settings, studies have focused exclusively on individual leaders who occupy formal leadership positions and exercise vertical influence over team members. In contrast to this traditional approach, shared leadership highlights a horizontal influence process where leadership is collectively carried out by team members. In this shared form of leadership, members actively participate in the leadership process and horizontally influence other team members. This mutual influence among team members constitutes a critical condition for the success of team-based organizations. The ability of team members to work together as a team is the key to the overall functioning of the team organization. To verify the effect of two leadership styles, we analyze the effect of a leader's transformational leadership and members' shared transformational leadership on team creativity and team performance for the same team. This study also predicts that the transformational leadership shared by members will moderate the effects of leader transformational leadership on team performance and creativity. Our findings show that both leaderships have a positive effect on team performance. However, the main effect of a leader's transformational leadership on team creativity is not significant when members' transformational leadership is employed into the model. With the effect of leader transformational leadership controlled for, the main effects of the transformational leadership shared by members on team creativity and performance are significant. In addition, we also found the significant moderation effects of member transformational leadership by leader transformational leadership on team creativity. Based on these findings, we strongly recommend that team based organizations shift the leadership focus from the leader focused leadership model to the shared leadership model. We also discuss managerial implications of our findings in details.

  • PDF

Composite Wood-Concrete Structural Floor System with Horizontal Connectors

  • SaRibeiro, Ruy A.;SaRibeiro, Marilene G.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.61-67
    • /
    • 2015
  • The concept of horizontal shear connection utilization on wood-concrete beams intends to be an alternative connection detail for composite wood-concrete decks. The volume of sawn-wood is over three times more expensive than concrete, in Brazil. In order to be competitive in the Brazilian market we need a composite deck with the least amount of wood and a simple and inexpensive connection detail. This research project uses medium to high density tropical hardwoods managed from the Brazilian Amazon region and construction steel rods. The beams studied are composed of a bottom layer of staggered wood boards and a top layer of concrete. The wood members are laterally nailed together to form a wide beam, and horizontal rebar connectors are installed before the concrete layer is applied on top. Two sets of wood-concrete layered beams with horizontal rebar connectors (6 and 8) were tested in third-point loading flexural bending. The initial results reveal medium composite efficiency for the beams tested. An improvement on the previously conceived connection detail (set with six connectors) for the composite wood-concrete structural floor system was achieved by the set with eight connectors. The new layout of the horizontal rebar connectors added higher composite efficiency for the beams tested. Further analysis with advanced rigorous numerical Finite Element Modeling is suggested to optimize the connection parameters. Composite wood-concrete decks can attend a large demand for pedestrian bridges, as well as residential and commercial slabs in the Brazilian Amazon.

시스템 동바리 구조 안전성에 대한 최소 수평하중의 영향 (Effects of Minimum Horizontal Load on Structural Safety of System Supports)

  • 정대현;김경윤;원정훈
    • 한국안전학회지
    • /
    • 제30권5호
    • /
    • pp.37-43
    • /
    • 2015
  • This study examined the effects of the minimum horizontal load on the structural behaviors and safety of system supports. The minimum horizontal load was frequently ignored in the design of system supports even though the level of that load was specified in the code and guide in Korea such as 'Standard Specification in Temporary Construction' and 'Guide to Installation of Shores for a Concrete Bridge'. To examine the effects of considering the minimum horizontal load, the finite element analysis were performed for various system supports. By varying installing parameters of system supports such as the vertical member spacing, the installation height, and the thickness of slab, the maximum combined stress ratios were estimated to investigate the structural safety of system supports. The results showed similar axial stress in vertical members but an increase in bending stress with a consideration of the horizontal load. The combines stress ratios are remarkably increased due to the consideration of the horizontal load. Consequently, the system supports, which were initially estimated to be safe when only the vertical loads were considered, were changed to be unsafe in most cases by the effects of the both the vertical and horizontal stresses. Therefore, the minimum horizontal load following the code and the guide is an essential load that could control the structural safety of system supports.

전단벽식 건축구조물 수직진동의 수평방향 전달특성에 관한 실험연구 (An Experimental Study on the Vertical Vibration Transfer in Horizontal Way according to Shear Wall Building Structures due to Exciting Vibration Forces)

  • 전호민
    • 한국소음진동공학회논문집
    • /
    • 제16권3호
    • /
    • pp.270-282
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions to near-rooms on the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the impact (heel-drop and hammer) excitation experiments were conducted several times on two building structure. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vertical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs, and are effected the shear wall on the Path of the vibration transfer.

Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars

  • Kim, Min Sook;Lee, Young Hak;Kim, Heecheul;Scanlon, Andrew;Lee, Junbok
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.459-477
    • /
    • 2011
  • Due to the low elastic modulus of FRP, concrete members reinforced with FRP rebars show greater deflections than members reinforced with steel rebars. Deflection is one of the important factors to consider the serviceability of horizontal members. In this study flexural test of AFRP reinforced concrete beams was performed considering reinforcement ratio and compressive strength as parameters. The test results indicated that flexural capacity and stiffness increase in proportion to the reinforcement ratio. The test results were compared with existing proposed equations for the effective moment of inertia including ACI 440. The most of the proposed equations were found to over-estimate the effective moment of inertia while the equation proposed by Bischoff and Scanlon (2007) most accurately predicted the values obtained through actual testing.

Investigation on the failure type of tower segments under equivalent static wind loads

  • Li, Yue;Xie, Qiang;Yang, Zheng
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.161-171
    • /
    • 2022
  • This paper presents a failure type assessment curve method to judge the failure type of transmission tower segments. This novel method considers the equivalent static wind load characteristics and the transmission tower members' load-bearing capacities based on numerical simulations. This method can help judge the failure types according to the relative positions between the actual state points and the assessment curves of transmission tower segments. If the extended line of the actual state point intersects with the horizontal part's assessment curve, the segment would lose load-bearing capacity due to the diagonal members' failure. Another scenario occurs when the intersection point is in the oblique part, indicating that the broken main members have caused the tower segment to fail. The proposed method is verified by practical engineering case studies and static tests on the scaled tower segments.

조립형 비계 및 동바리 부재 기준에 관한 연구 (A Study on Standards for Components for Tied Post System Scaffolding and Shoring)

  • 문성오;이상열;윤예빈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.25-26
    • /
    • 2021
  • System scaffolding and shoring are temporary structures in which vertical members, horizontal members, bracing members and trusses are assembled and installed. In order to ensure quality and safety, the quality test shall be carried out in accordance with the Guidelines for Quality Management of Construction Works (MOLIT Notice No. 2020-750). The quality test method (national standard) for Components for tied post system scaffolding and shoring is based on the Korean standards (KS F 8021) and the Safety certification standards (MOEL Notice No. 2021-22). However, the two standards differ in some aspects such as performance standards and etc, so cause confusion when applying them on-site. In addition, the standard for truss are applied only to trusses for shoring and cannot be applied to trusses for scaffolding. Therefore, this study aims to unify the two national standards and establish realistic standards.

  • PDF

류금두공의 양식적 형성과정 연구 (A Study on the Style Emergence of Liujin Dougong)

  • 백소훈
    • 건축역사연구
    • /
    • 제26권3호
    • /
    • pp.19-30
    • /
    • 2017
  • This paper studies the style emergence of Liujin Dougong in the ancient Chinese architecture. Dougong is the bracket set of the ancient Chinese wood structural architecture, and Liujin Dougong is one of the late styles of Chinese Dougong. It emerged in the period of the Ming Dynasty and has been installed in imperial palaces and imperial temples till the late period of the Qing Dynasty. Through the long term field survey and documental investigation, this research found out the some prototypes of Liujin Dougong among the earlier Xia-ang style Dougongs in the Song and Yuan Dynasty architectures. The symptom of style change appeared in the bracket composition. In the beginning, because Shuatou, the horizontal member just on Xia-ang was needed to be fixed to the inner main structure system, it was changed to the diagonal member and replaced Xia-ang. It brought continuous changes, the other horizontal members of Dougong also began to change to the diagonal form. And in accordance with these compositional changes of Dougong members, the decoration of inner parts also began to change. This paper analyzed every step of the compositional and decorative changes from Xia-ang Dougong style to Liujin Dougong style. In the addition, it also proposed the typical model of Qing style Liujin Dougong of which tail end is not placed on the beam and is just placed under the purlin, based on the its own research and analysis.