• Title/Summary/Keyword: Horizontal Members

Search Result 201, Processing Time 0.025 seconds

A Study on the Particularity of Korean Fashion Taste Community from the Subculture Perspective (하위문화 관점에서 바라본 한국 소수 패션 취향 공동체의 특수성 연구)

  • Kim, Nayun;Ha, Jisoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.1
    • /
    • pp.14-25
    • /
    • 2018
  • This study is to understand subculture as a selective amity or an emotional tribe that includes a life style, hobby and leisure of people and seeing it as the tribal solidarity or emotional alliance. Hence, based on the neo-tribalism by Michel Maffesoli who explains a tribe not composing a social vertical structure represented by class, but is composed a horizontal structure of individuals as a member of a society, this study conducted an empirical analysis on domestic minor fashion communities. Research findings show that they have a unique structure unexplained by Maffesoli. Fashion styles, values shared by domestic minor fashion communities are almost entirely based on individual likes and dislikes, escaping from a symbol of resistance to subordination explained by the existing subculture, play a role in enhancing the solidarity inside the community and confirming its identity outside. However, as for shared values within a community, it reveals a new invisible type of subculture intra-inter domestic minor fashion communities. A community showed a closed mind rather than open mind, disregarding or comparing with other communities and preventing their members from participation. A community had strict fashion rules and obvious classes, leading to participatory restriction. In conclusion, domestic minor fashion communities showed the most significant characteristic of a selective vertical structure by individual and community rather than a vertical structure by a society.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

A Proposal for Damage Index of Steel Members under Cyclic Loading (반복하중하에서의 강부재에 대한 손상지수 제안)

  • Park, Yeon Soo;Kang, Dae Hung;Oh, Jung Tae;Choi, Dong Ho;Oh, Back Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.613-625
    • /
    • 2002
  • This paper aimed to investigate the damage process of steel parts experiencing failure under strong repeated loading. Likewise, a damage index using various factors related to the damage was proposed. An analysis method for evaluating the damage state was also developed. The damage assessment method focused on the local strain history at the cross-section of the heaviest concentration of deformation. Cantilever-type steel parts were analyzed under uniaxial load combined with a constant axial load, considering horizontal displacement history, Loading patterns and steel types were considered as the main parameters in analyzing the models. The effects of the parameters on the failure modes, deformation capacity, and damage process as seen from the analysis results were also discussed. Each failure process was compared as steel types. In addition, the failure of steel parts under strong repeated loading was determined according to loading. Results revealed that the state of the failure is closely related to the local plastic strain.

A Study on the Fatigue Design of Joint Detail of Vertical Stiffener in Two-Girder Bridge (2거더교의 수직보강재 연결상세부의 피로설계에 관한 연구)

  • Kwon, Soon Cheol;Kyung, Kab Soo;Park, Jin Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • Two-girder bridge is composed of primary members such as deck slab and main girder, and secondary member such as cross beam, vertical and horizontal stiffeners etc,. Two-girder bridge is prescribed as a non-redundant load path structure in the ASSHTO and the Korean Highway Bridge Design Code. Such structure is that if one girder is damaged, problems of function and safety of the bridge are caused. From the reasons, fatigue cracks in two-girder bridge can affect safety of the bridge seriously. Therefore, in this paper, fatigue evaluation was performed at connection parts of vertical stiffener and web with radius of curvature of scallop of vertical stiffener and thickness of web as variables. Such joint is known as a detail which has high possibility of fatigue crack in the bridge. Based upon the analytical results, preferable joint detail in terms of fatigue and simple empirical formula for fatigue evaluation of the detail were suggested.

A Case of Familial Clustering of Hepatitis C Virus (C형 간염의 가족 내 집단 감염 1례)

  • Jeung, Hoon;Jang, Hyeun Sub;Lee, Yun Jin;Lee, Kyun Woo;Kim, Hye Young;Park, Jae Hong
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.8 no.1
    • /
    • pp.91-95
    • /
    • 2005
  • The familial environment may also play an important role in the epidemiology of HCV infection through vertical and horizontal transmission by infected household members. However, it is still controversial whether familial clustering of HCV occurs. We experienced a case of familial clustering of hepatitis C virus. A 10-year old girl presented with nausea, vomiting and anorexia for a month was diagnosed as hepatitis C. Her mother, grandmother, a maternal aunt and her daughter had contracted with HCV. Her laboratory findings showed AST/ALT 63/122 IU/L, positive anti-HCV Ab and HCV RNA ($3.54{\times}10^5copies/mL$). Pathologic findings of the liver biopsy revealed chronic hepatitis with minimal lobular activity, mild porto-periportal activity and mild portal fibrosis. After treatment with interferon-${\alpha}$ 2b for 6 months, the clinical symptoms and laboratory findings were normalized.

  • PDF

Seismic Isolation Effects Due to the Difference Between the Center of Mass of the Building and the Center of Stiffness of Isolation Layer (건물의 질량중심과 면진층의 강성중심 차이에 따른 면진효과)

  • Hur, Moo-Won;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.107-115
    • /
    • 2014
  • In this study, we examined the seismic isolation effects due to the difference between the center of mass of the building and the center of stiffness of isolation layer. Because the base isolation technique is a technique that is highly dependent on the performance of seismic isolation devices installed on the seismic isolation layer, we have to examine the horizontal stiffness of seismic isolation devices after making them. If difference between the design stiffness and the actual stiffness of the seismic isolation device occurred, a big problem may be generated in the upper members on the seismic isolation layer. The analytical results show that the more eccentricity increases, the more maximum response acceleration, story shear and the member forces of the upper part of the structure increases, and the damage is expected to be in excess. Therefore, it is recommended that if possible, isolation devices have to be designed to coincide the center of mass of the building with the center of stiffness of isolation layer. If not after making isolation devices, they need to be relocated to prevent the eccentricity.

Analysis of Plasmid pJP4 Horizontal Transfer and Its Impact on Bacterial Community Structure in Natural Soil

  • KIM TAE SUNG;KIM MI SOON;JUNG MEE KUM;JOE MIN JEONG;AHN JAE HYUNG;OH KYOUNG HEE;LEE MIN HYO;KIM MIN KYUN;KA JONG OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.376-383
    • /
    • 2005
  • Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Seismic P-$\Delta$ Effects of Slender RC Columns in Earthquake Analysis (지진하중을 받는 철근콘크리트 장주의 P-$\Delta$ 효과)

  • Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.375-387
    • /
    • 2006
  • Different from the previous studies which investigated seismic P-$\Delta$ effect in slender columns though comparison of response spectra according to stability coefficients obtained from the analyses based on the assumed moment-curvature relationship, the axial force and P-$\Delta$ effect in RC columns are investigated on the basis of the layered section method which can effectively consider the changes of stiffness and yield strength due to the application of axial force in RC members. Practical ranges of slenderness and stability coefficient are assumed, and sixty sets of horizontal/vertical earthquake inputs are used in the analysis. From the parametric study, it is noted that the maximum deformation of the slender RC column is hardly affected by P-$\Delta$ effect or vortical earthquake but dominantly affected by the applied axial force. Therefore, it can be concluded that no additional consideration for the P-$\Delta$ effect and vortical earthquake is required in the seismic design of a slender RC column if the axial force effect is taken into account in the analysis and design procedures.

CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases

  • Kim, Jun-Seob;Cho, Da-Hyeong;Park, Myeongseo;Chung, Woo-Jae;Shin, Dongwoo;Ko, Kwan Soo;Kweon, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.394-401
    • /
    • 2016
  • Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.