• 제목/요약/키워드: Horizontal Joint

Search Result 382, Processing Time 0.026 seconds

Performance evaluation of different strengthening measures for exterior RC beam-column joints under opening moments

  • Dar, M. Adil;Subramanian, N.;Pande, Sumeet;Dar, A.R.;Raju, J.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.243-254
    • /
    • 2020
  • Devastating RC structural failures in the past have identified that the behavior of beam-column joints is more critical and significantly governs the global structural response under seismic loading. The congestion of reinforcement at the beam-column joints with other constructional difficulties has escalated the attention required for strengthening RC beam-column joints. In this context, numerous studies have been carried out in the past, which mainly focused on jacketing the joints with different materials. However, there is no comparative study of different approaches used to strengthen RC beam-column joints, from efficiency and cost perspective. This paper presents a detailed investigation carried out to study the various strengthening schemes of exterior RC beam-column joints, viz., steel fiber reinforcement, carbon fiber reinforced polymer (CFRP) strengthening, steel haunch strengthening, and confining joint reinforcement. The effectiveness of each scheme was evaluated experimentally. These specimens were tested under horizontal loading that produced opening moments on the joints and their behavior was studied with emphasis on strength, displacement ductility, stiffness, and failure mechanism. Special attention was given to the study of crack-width.

A Study on Real-time Control of Bead Height and Joint Tracking (비드 높이 및 조인트 추적의 실시간 제어 연구)

  • Lee, Jeong-Ick;Koh, Byung-Kab
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.71-78
    • /
    • 2007
  • There have been continuous efforts to automate welding processes. This automation process could be said to fall into two categories, weld seam tracking and weld quality evaluation. Recently, the attempts to achieve these two functions simultaneously are on the increase. For the study presented in this paper, a vision sensor is made, and using this, the 3 dimensional geometry of the bead is measured in real time. For the application in welding, which is the characteristic of nonlinear process, a fuzzy controller is designed. And with this, an adaptive control system is proposed which acquires the bead height and the coordinates of the point on the bead along the horizontal fillet joint, performs seam tracking with those data, and also at the same time, controls the bead geometry to a uniform shape. A communication system, which enables the communication with the industrial robot, is designed to control the bead geometry and to track the weld seam. Experiments are made with varied offset angles from the pre-taught weld path, and they showed the adaptive system works favorable results.

FE analysis of RC pipes under three-edge-bearing test: Pocket and diameter influence

  • Kataoka, Marcela Novischi;da Silva, Jefferson Lins;de Oliveira, Luciane Marcela Filizola;El Debs, Mounir Khalil
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.483-490
    • /
    • 2017
  • This paper studies on the behavior of reinforced concrete (RC) pipes used in basic sanitation in the conduction of storm water and sanitary sewer. Pipes with 800 mm and 1200 mm in diameter were analyzed. The 800 mm pipes were built with simple reinforcement and the 1200 mm pipes with double reinforcement. For the two diameters of pipes the presence or absence of the pocket was evaluated, and the denomination of each one is spigot and pocket pipe (SPP) and ogee joint pipe (OJP), respectively. The 3D numerical models reproduce the three-edge-bearing test that provides information about the strength and stiffness of the reinforced concrete pipes. The validation of the computational models was carried out comparing the vertical and horizontal displacements on the springline and crown/invert and it was also evaluated the reinforcement strains and the crack pattern. As a main conclusion, the numerical models represented satisfactorily the behavior of the pipes and can be used in future studies in parametric analysis.

A Kinematical Analysis of the Kenmotsu on the Parallel Bars (평행봉 Kenmotsu 동작의 운동학적 분석)

  • Kong, Tae-Ung;Kim, Young-Sun;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.61-70
    • /
    • 2005
  • The purpose of study was to investigate the kinematic variables of Kenmotsu motion in Parallel bars. To this study, by 3 dimensional kinematical analysis of 4 male national gymnasts participants in the 28th Athens Olympic Game in 2004, kinematic data collected using video camera. Coordinate data were smoothed by using a fourth-order Butterworth low pass digital filter with cutoff frequency of 6Hz. The conclusions were as follows. 1. In P2, because the constrained swing movement made the movement of a rising back difficult7, the movements of Reg. were performed at low position after Air phase. 2. In E5 event, for the shake of a stable handstand and applied techniques like a Belle(E-value), a Belle Piked(super E-value), a vertical velocity in E2, a horizontal velocity in E3 and a vertical velocity in E4 were necessary for high velocities. 3. In E4 event, it was appeared that for a flexible body's movement of a vertical up-flight, the large angle of the shoulder joint and the flexion & extension of the hip joint were necessary in Air phase and a long flight time and vertical displacement made Reg. movements stable at the high position.

A Comparison of Ground Vibration in Center Cut Blasting using Artificial Joints (인공절리를 이용한 심발 발파에서의 지반진동 비교)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • In order to reduce ground vibration during tunnel excavation, a free surface blasting method has been applied in which a partial free surface is formed on the excavation surface and controlled blasting is performed. In this study, the ground vibration reduction due to artificial joints was evaluated by forming artificial joints on center cut using diamond wire saw and comparing the ground vibration caused by center cut blasting. As a result of comparison, ground vibration was reduced by artificial joints center cut blasting more than normal center cut blasting, and the ground vibration reduction effect of horizontal artificial joints center cut blasting was evaluated more than that of vertical artificial joint center cut blasting.

Effects of Flexible and Semirigid Lumbosacral Orthosis on Lower-Limb Joint Angles during Gait in Patients with Chronic Low Back Pain: A Cross-Sectional Study

  • Im, Sang-Cheol;Kim, Kyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • PURPOSE: Lumbosacral orthosis (LSO) is often used to help manage low back pain because it is economical and effective. This study examined the effects of flexible and semirigid LSOs on the lower-limb joint angles in walking in patients with chronic low back pain. METHODS: The effects of the lumbosacral orthosis during gait on the sagittal, frontal, horizontal planes and the change in lower limb angle were examined in fourteen chronic low back pain patients who walked without wearing a LSO, wearing a flexible LSO, and wearing a semirigid LSO in random order for three-dimensional motion analysis. RESULTS: The flexion of the hip and knee joints decreased more significantly during walking with an LSO than without one. The genu valgum angles were reduced in the stance phase more during walking with an LSO than without one. The external rotation of the knee joints in the stance phase increased more during walking with an LSO than without one. CONCLUSION: The angles of the lower-limb joints of patients with chronic low back pain are affected by walking with an LSO, and the effects increased as the LSO stiffened.

Analysis of underground post-tensioned precast concrete box utility tunnel under normal fault displacement

  • Wu, Xiangguo;Nie, Chenhang;Qiu, Faqiang;Zhang, Xuesen;Hong, Li;Lee, Jong-Sub;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.69-79
    • /
    • 2022
  • For long underground box utility tunnels, post-tensioned precast concrete is often used. Between precast tunnel segments, sealed waterproof flexible joints are often specified. Fault displacement can lead to excessive deformation of the joints, which can lead to reduction in waterproofing due to diminished contact pressure between the sealant strip and the tunnel segment. This paper authenticates utilization of a finite element model for a prefabricated tunnel fault-crossing founded on ABAQUS software. In addition, material parameter selection, contact setting and boundary condition are reviewed. Analyzed under normal fault action are: the influence of fault displacement; buried depth; soil friction coefficient, and angle of crossing at the fault plane. In addition, distribution characteristics of the utility tunnel structure for vertical and longitudinal/horizontal relative displacement at segmented interface for the top and bottom slab are analyzed. It is found that the effect of increase in fault displacement on the splice joint deformation is significant, whereas the effects of changes in burial depth, pipe-soil friction coefficient and fault-crossing angle on the overall tunnel and joint deformations were not so significant.

Investigation of design methods in calculating the load-carrying capacity of mortise-tenon joint of timber structure

  • Hafshah Salamah;Seung Heon Lee;Thomas H.-K. Kang
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.307-323
    • /
    • 2023
  • This study compares two prominent design provisions, National Design Specification (NDS) and Eurocode 5, on load-carrying capacity calculations and failure analysis for mortise-tenon joints. Design procedures of double-shear connection from both provisions were used to calculate load-carrying capacity of mortise-tenon joints with eight different bolt sizes. From this calculation, the result was validated using finite element analysis and failure criteria models. Although both provisions share similar failure modes, their distinct calculation methods significantly influence the design load-carrying capacity values. Notably, Eurocode 5 predicts a 6% higher design load-carrying capacity for mortise-tenon joints with varying bolt diameters under horizontal loads and 14% higher under vertical loads compared to NDS. However, the results from failure criteria models indicate that NDS closely aligns with the actual load-carrying capacity. This indicates that Eurocode 5 presents a less conservative design and potentially requires fewer fasteners in the final timber connection design. This evaluation initiates the potential for the development of a wider range of timber connections, including mortise-tenon joints with wooden pegs.

Experimental Analysis of Terminus and Horizontal Crack Behaviors in Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 단부 및 수평균열 거동 실험적 분석)

  • Cho, Young-Kyo;Kim, Seong-Min;An, Zuog;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.81-91
    • /
    • 2011
  • This study was conducted to evaluate the necessity of the anchor lug system in continuously reinforced concrete pavement(CRCP) by comparing longitudinal displacements of CRCPs with and without anchor lugs, and to investigate the effect of horizontal cracking on CRCP performance by measuring the vertical displacements. The measurements before and after the anchor lug section was separated were conducted for 12 days in June, and for 14 days in August after the abrupt displacements according to cutting disappeared, respectively. This short term measurement results showed that when anchor lugs were installed, a daily displacement variation at any location was less than 0.1mm; therefore, longitudinal movements were negligibly small. When there were no anchor lugs, longitudinal displacements mainly occurred near the free end and the displacement variation was small; therefore, an expansion joint system seems to be employed at a CRCP terminus without installing anchor lugs. However, further studies are needed to verify the terminus behavior due to annual temperature changes. The horizontal crack width variation was ignorable and did not affect the vertical displacement of the slab. Therefore, the horizontal crack did not delaminate the slab and did not seem to reduce the structural capacity and performance of CRCP.

The 3-D Motion Analysis of Kinematic Variety on Lower Extremity during Ramp Ascent at Different Inclinations (정상인의 오름 경사로 보행 시 경사각에 따른 하지 관절의 삼차원적 동작 분석)

  • Han, Jin-Tae;Lee, Jong-Dae;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.4
    • /
    • pp.633-650
    • /
    • 2005
  • The aim of this study was to investigate the kinematics of young adults during ascent ramp climbing at different inclinations. Twenty-three subjects ascended a four step at four different inclinations(level, $8^{\circ},\;16^{\circ},\;24^{\circ}$). The 3-D kinematics was analysed by a camera-based falcon system. Groups difference was tested with one -way ANOVA and SNK test. The different kinematic patterns of ramp ascent were analysed and compared to level walking patterns. The kinematics of ramp walking could be clearly distinguished from the kinematics of level walking. In sagittal plane, Ankle joint was more dorsiflexed at initial contact and Max. dorsiflex. during stance phase with $16^{\circ},\;24^{\circ}$ inclination and more plantarflexed at toe off and Max. plantarflex. during swing phase with $24^{\circ}$(p<.001). Knee joint was more flexed at initial contact with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Hip joint was more flexed at initial contact and Max. flex. during swing phase with $16^{\circ},\;24^{\circ}$ inclination and at toe off with $24^{\circ}$(p<.001) and was more extended at Max. ext. during stance phase with $24^{\circ}$(p<.05). In frontal plane, ankle joint was more everted at Max. eversion. during stance phase with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Knee joint was more increased at Max. varus. during stance phase with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Hip joint was not differentiated with different inclinations. In horizontal plane, all joints were not differentiated with different inclinations. Conclusionally, In ascent ramp walking, the different gait pattern generally occurred at over $16^{\circ}$ on the ascending ramp in sagittal and frontal plane. These results suggest that there is a certain inclination angle or angular range where subjects do switch between a level walking and a ascent ramp walking gait pattern. This shows their motor control strategy between level and ascent ramp walking. Further studies are necessary to confirm and detect the ascent ramp gait patterns.

  • PDF