• 제목/요약/키워드: Horizontal Ground Heat Pump System

검색결과 19건 처리시간 0.035초

시설원예용 수평형 지열히트펌프 시스템 실증연구 (A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse)

  • 박용정;강신형
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

시설원예용 수평형 지열 히트펌프 시스템의 성능분석 (Performance Analysis of the Horizontal Ground Source Heat Pump for Greenhouse)

  • 박용정;강신형
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.447-452
    • /
    • 2007
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger(GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump ($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

수평형 지열 히트펌프 시스템의 냉난방 성능 분석 (Performance Analysis of Ground-Coupled Heat Pump System with Slinky-Type Horizontal Ground Heat Exchanger)

  • 손병후
    • 설비공학논문집
    • /
    • 제24권3호
    • /
    • pp.230-239
    • /
    • 2012
  • Ground-coupled heat pump (GCHP) systems utilize the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. The main objective of the present study is to investigate the cooling and heating performance of a small scale GCHP system with horizontal ground heat exchanger (HGHE). In order to evaluate the performance, a water-to-air ground-source heat pump unit connected to a test room with a net floor area of 18.4 m2 and a volume of 64.4 m3 in the Korea Institute of Construction Technology ($37^{\circ}39'N$, $126^{\circ}48'E$) was designed and constructed. This GCHP system mainly consisted of slinky-type HGHE with a total length of 400 m, indoor heat pump, and measuring devices. The peak cooling and heating loads of the test room were 5.07 kW and 4.12 kW, respectively. The experimental results were obtained from March 15, 2011 to August 31, 2011 and the performance coefficients of the system were determined from the measured data. The overall seasonal performance factor (SPF) for cooling was 3.31 while the system delivered heating at a daily average performance coefficients of 2.82.

지중열 이동 시뮬레이션을 이용한 수평형 지열시스템의 채열성능 예측 (Prediction of the Heat Exchange Rate for a Horizontal Ground Heat Pump System Using a Ground Heat Transfer Simulation)

  • 남유진;채호병
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.297-302
    • /
    • 2013
  • The ground source heat pump (GSHP) system has attracted attention, because of its stability of heat production, and the high efficiency of the system. However, there are few studies on the prediction method of the heat exchange rate for a horizontal GSHP system. In this research, in order to predict the performance of a horizontal GSHP system, coupled simulation with a ground heat transfer model and a heat exchanger circulation model was developed, and calculation of heat exchange rate was conducted by the developed tool. In order to optimally design the horizontal GSHP system, the flow rate of circulation water, and the depth and buried spaces of heat exchangers were considered by the case study. As a result, the temperature of circulation water and the heat exchange rate of the system were calculated in each case.

수평형 지열히트펌프 시스템의 시설원예 냉난방 실증 효과 (Heating and Cooling Effect of Portected Horticulture by Geothermal Heat Pump System with Horizontal Heat Exchanger)

  • 유영선;강연구;김영중;강금춘
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.630-633
    • /
    • 2008
  • Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house and etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump system in agriculture, a horizontal geothermal heat pump system of 10 RT was installed in greenhouse. Heating and cooling performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of $14^{\circ}C$ with depth of 1.75m and heating COP of 3.75 at soil temperature of $7^{\circ}C$ with the same depth. The cooling COP was 2.7 at ground temperature at 1.75m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$.

  • PDF

건물구조체를 이용한 수평형 지열시스템의 시공법에 관한 연구 (Study on construction method of horizontal ground heat pump system using the building structure)

  • 채호병;남유진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.139-140
    • /
    • 2013
  • Ground source heat pump systems can achieve the energy saving of building and reduce CO2 emission by utilizing stable ground temperature. However, they have many barriers such as high cost of installation, incompletion of design tool, lack of recognition as heating and cooling systems. In order to solve the problems, the building integrated geothermal system (BIGS) developed by several researches which use building foundation as a heat exchanger. In order to establish the optimum design tool of BIGS with the horizontal heat exchanger, the prediction method of ground heat exchange rate developed with numerical simulation model. In this study, the economic analysis for BIGS was conducted based on simulation results and the optimal design method was suggested. As a result, it was found that the case of 32 A, piping space 0.3 m, piping deep 0.5 m and flow rate 9.52 L/min was the best case as 50.1 W/m2 of heat exchange rate. In this case the initial cost was reduced to 115 million won.

  • PDF

소규모 주택에 대한 수평형 지열 히트펌프 형태 결정에 관한 연구 (A Study on the description of Horizontal Geothermal Heat pump Type on Small Residential House)

  • 윤장렬;조성우;최정민
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.328-332
    • /
    • 2011
  • The conclusion is derived from the arranged results and using a simulation by determining the shape of an optimum heat pump which is appropriate for small scale houses. It is concluded as 3 meters long for the laying depth of underground piping of the horizontal type geothermal heat pump system in regard to the 5 RT capacity standard that is suitable for a small scale house. The shape of the horizontal type geothermal heat pump system for a small scale house is theThree pipe shape whose trench length is short and pipe length laid in a trench is short. It is 9 for the number of laying pipes that is most appropriate to system.

  • PDF

수평형 지열원 히트펌프 시스템에 관한 연구 (A Study on Horizontal Ground Source Heat Pump Systems)

  • 박용정;김경훈
    • 에너지공학
    • /
    • 제15권3호
    • /
    • pp.160-165
    • /
    • 2006
  • 지열원 히트펌프 시스템은 난방과 냉방부분에서 두드러진 관심을 보이고 있다. 국내에 설치된 지열원 히트펌프 시스템의 대부분은 수직형 방식으로 연구대상 또한 수직형이 주류이다. 본 연구에서는 수평형 지열원 시스템을 시설하우스에 설치하여 성능을 조사하였다. 연구결과, 히트펌프만 고려한 난방성능계수는 3.64이고 지열순환펌프를 포함한 성능계수는 3.31로 나타났다. 응축기 제거열에 대한 순환펌프의 동력은 28.0 W/kW이고, 열교환기길이는 53.3m/kW였다. 지중으로부터의 평균채열량은 14.58 W/m이고, 응축열에 대한 열교환기가 매립된 트렌치길이는 27.7m/kW였다.

축열조를 채용한 수평형 지열원 히트펌프 온실 난방 시스템에 관한 연구 (A Study on the Horizontal Ground Source Beat Pump Greenhouse Heating System with Thermal Storage Tank)

  • 박용정;김경훈
    • 에너지공학
    • /
    • 제15권3호
    • /
    • pp.194-201
    • /
    • 2006
  • 온실은 작물의 성장조건을 맞추기 위해서 야간 및 추운 날에는 난방을 해야 한다. 지열원 히트펌프 시스템은 냉난방 시스템에서 두드러진 관심을 보이고 있다. 축열조를 채용한 수평형 지열원 히트펌프 시스템을 온실에 적용하여 성능특성을 조사하였다. 그리고 축열조를 채용한 이유를 자세하게 설명하였다. 축열조는 지열원 히트펌프 시스템의 난방능력보다 큰 난방부하를 대응할 수 있다. 연구 결과, 시스템전체의 성능계수는 2.69로 나타났다.

수평형 지중열교환기 설계를 위한 토양 열전도도 예측 모델 평가 (Evaluation of Conventional Prediction Models for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchangers)

  • 손병후;위지혜;박상우;임지희;최항석
    • 한국지반공학회논문집
    • /
    • 제29권2호
    • /
    • pp.5-14
    • /
    • 2013
  • 지중 토양의 열 물리적 성질 중 열전도도(thermal conductivity)는 지열 히트펌프 시스템(ground-coupled heat pump systems)의 지중열교환기 설계 과정에서 매우 중요한 변수다. 토양의 열전도도는 3상 구조로 인해 함수비와 건조밀도의 영향을 많이 받는다. 본 논문에서는 수평형 지중열교환기의 트렌치 뒤채움재로 사용되는 9종류의 토양(모래-물혼합물)을 대상으로 열전도도 측정결과와 기존 상관식에 의한 계산결과를 비교하였다. 건조토인 경우, 2상 구조의 열전도도 예측모델인 준이론 모델에 의한 열전도도 계산 결과는 측정 결과와 큰 차이를 보였다. 불포화토인 경우, 기존 모델 중 Cote와 Konrad가 제시한 모델에 의한 계산 결과가 측정 결과와 가장 잘 일치하였다. 또한 토양의 열전도도와 함수비, 종류 등이 수평형 지중열교환기의 설계 길이에 미치는 영향을 고찰하였다. 뒤채움재로 사용되는 토양의 열전도도가 증가할수록 수평형 지중열 교환기의 설계 길이는 감소하였다.