• Title/Summary/Keyword: Hopf algebra

Search Result 23, Processing Time 0.015 seconds

LIE BIALGEBRA ARISING FROM POISSON BIALGEBRA U(sp4)

  • Oh, Sei-Qwon;Hyun, Sun-Hwa
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.57-60
    • /
    • 2008
  • Let $U(sp_4)$ be the universal enveloping algebra of the symplectic Lie algebra $sp_4$. Then the restricted dual $U(sp_4)^{\circ}$ becomes a Poisson Hopf algebra with the Sklyanin Poisson bracket determined by the standard classical r-matrix. Here we illustrate a method to obtain the Lie bialgebra from a Poisson bialgebra $U(sp_4)^{\circ}$.

  • PDF

THE GROUP OF STRONG GALOIS OBJECTS ASSOCIATED TO A COCOMMUTATIVE HOPF QUASIGROUP

  • Alvarez, Jose N. Alonso;Rodriguez, Ramon Gonzalez;Vilaboa, Jose M. Fernandez
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.517-543
    • /
    • 2017
  • Let H be a cocommutative faithfully flat Hopf quasigroup in a strict symmetric monoidal category with equalizers. In this paper we introduce the notion of (strong) Galois H-object and we prove that the set of isomorphism classes of (strong) Galois H-objects is a (group) monoid which coincides, in the Hopf algebra setting, with the Galois group of H-Galois objects introduced by Chase and Sweedler.

ON ACTION OF LAU ALGEBRAS ON VON NEUMANN ALGEBRAS

  • Mohammad, Ramezanpour
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.557-570
    • /
    • 2015
  • Let $\mathbb{G}$ be a von Neumann algebraic locally compact quantum group, in the sense of Kustermans and Vaes. In this paper, as a consequence of a notion of amenability for actions of Lau algebras, we show that $\hat{\mathbb{G}}$, the dual of $\mathbb{G}$, is co-amenable if and only if there is a state $m{\in}L^{\infty}(\hat{\mathbb{G}})^*$ which is invariant under a left module action of $L^1(\mathbb{G})$ on $L^{\infty}(\hat{\mathbb{G}})^*$. This is the quantum group version of a result by Stokke [17]. We also characterize amenable action of Lau algebras by several properties such as fixed point property. This yields in particular, a fixed point characterization of amenable groups and H-amenable representation of groups.