• Title/Summary/Keyword: Hop-by-Hop Routing

Search Result 307, Processing Time 0.027 seconds

QoS Mesh Routing Protocol for IEEE 802.16 based Wireless Mesh Networks (IEEE 802.16 기반의 무선 메쉬 네트워크를 위한 QoS 메쉬 라우팅 프로토콜)

  • Kim, Min;Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1226-1237
    • /
    • 2007
  • This paper proposes QoS mesh routing protocol for IEEE 802.16 based wireless mesh networks. QoS mesh routing protocol proposed in this paper is a proactive hop-by-hop QoS routing protocol. The goal of our routing protocol is not only to find a route from a source to a destination, but also optimal route that satisfies QoS requirements, given in terms of bandwidth and delay as default QoS parameters. In this paper, we first analyze possible types of routing protocols that have been studied for MANET and show proactive hop-by-hop routing protocols are the most appropriate for wireless mesh networks. Then, we present a network model for IEEE 802.16 based wireless mesh networks and propose a proactive hop-by-hop QoS routing protocol. Through our simulation, we represent that our routing protocol outperforms QOLSR protocol in terms of end-to-end delay, packet delivery ratio and routing overhead.

A Cost-Aware Multi-path DSDV Routing Protocol in Wireless Mesh Networks (무선 메쉬 네트워크에서 비용 인지 다중 경로 DSDV 라우팅 프로토콜)

  • Lee, Seong-Woong;Chung, Yun-Won
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.289-296
    • /
    • 2008
  • In wireless mesh network, studies on routing protocols have been actively carried out recently, and hop count is used as a major routing metric in destination-sequenced distance-vector (DSDV) routing protocol, which is a representative proactive routing protocol. Although hop-by-hop multi-path (HMP) DSDV and enhanced HMP (EHMP) DSDV routing protocols perform routing by considering both hop count and residual bandwidth within one hop distance nodes, it has a shortcoming that routing is carried out via non-optimal path from the aspect of end-to-end routing. In order to overcome the shortcoming, a cost-aware multi-path (CAMP) DSDV routing protocol is proposed in this paper, which considers hop count and end-to-end minimum residual bandwidth. Simulation results based on NS-2 show that the proposed routing protocol performs better than DSDV, HMP DSDV, and EHMP DSDV protocols from the aspect of throughput and packet delivery ratio, by appropriately using hop count and end-to-end minimum residual bandwidth information and has the same number of management messages with HMP DSDV and EHMP DSDV protocols.

A Network Coding-Aware Routing Mechanism for Time-Sensitive Data Delivery in Multi-Hop Wireless Networks

  • Jeong, Minho;Ahn, Sanghyun
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1544-1553
    • /
    • 2017
  • The network coding mechanism has attracted much attention because of its advantage of enhanced network throughput which is a desirable characteristic especially in a multi-hop wireless network with limited link capacity such as the device-to-device (D2D) communication network of 5G. COPE proposes to use the XOR-based network coding in the two-hop wireless network topology. For multi-hop wireless networks, the Distributed Coding-Aware Routing (DCAR) mechanism was proposed, in which the coding conditions for two flows intersecting at an intermediate node are defined and the routing metric to improve the coding opportunity by preferring those routes with longer queues is designed. Because the routes with longer queues may increase the delay, DCAR is inefficient in delivering real-time multimedia traffic flows. In this paper, we propose a network coding-aware routing protocol for multi-hop wireless networks that enhances DCAR by considering traffic load distribution and link quality. From this, we can achieve higher network throughput and lower end-to-end delay at the same time for the proper delivery of time-sensitive data flow. The Qualnet-based simulation results show that our proposed scheme outperforms DCAR in terms of throughput and delay.

Hop-by-Hop Dynamic Addressing Based Routing Protocol for Monitoring of long range Underwater Pipeline

  • Abbas, Muhammad Zahid;Bakar, Kamalrulnizam Abu;Ayaz, Muhammad;Mohamed, Mohammad Hafiz;Tariq, Moeenuddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.731-763
    • /
    • 2017
  • In Underwater Linear Sensor Networks (UW-LSN) routing process, nodes without proper address make it difficult to determine relative sensor details specially the position of the node. In addition, it effects to determine the exact leakage position with minimized delay for long range underwater pipeline monitoring. Several studies have been made to overcome the mentioned issues. However, little attention has been given to minimize communication delay using dynamic addressing schemes. This paper presents the novel solution called Hop-by-Hop Dynamic Addressing based Routing Protocol for Pipeline Monitoring (H2-DARP-PM) to deal with nodes addressing and communication delay. H2-DARP-PM assigns a dynamic hop address to every participating node in an efficient manner. Dynamic addressing mechanism employed by H2-DARP-PM differentiates the heterogeneous types of sensor nodes thereby helping to control the traffic flows between the nodes. The proposed dynamic addressing mechanism provides support in the selection of an appropriate next hop neighbour. Simulation results and analytical model illustrate that H2-DARP-PM addressing support distribution of topology into different ranges of heterogeneous sensors and sinks to mitigate the higher delay issue. One of the distinguishing characteristics of H2-DARP-PM has the capability to operate with a fewer number of sensor nodes deployed for long-range underwater pipeline monitoring.

Cluster-Based Multi-Path Routing for Multi-Hop Wireless Networks (무선 다중 홉 네트워크에서의 클러스터 기반 다중 경로 라우팅)

  • Zhang, Jie;Jeong, Choong-Kyo;Lee, Goo-Yeon;Kim, Hwa-Jong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.114-121
    • /
    • 2008
  • Multi-path routing has been studied widely in wired networks. Multi-path routing is known to increase end-to-end throughput and provide load balancing in wired networks. However, its advantage is not obvious in wireless multi-hop network because the traffic along the multiple paths may interfere with adjacent paths. In the paper, we introduce a new multi-path routing scheme, Cluster-Based Multi-Path Routing for multi-hop wireless networks. The main idea of the proposed routing scheme is to extend the hop-by-hop multi-path to a cluster-by-cluster multi-path. In cluster network, each cluster can work independently from other clusters and hence reduce interference. The purpose of the proposed scheme is to find a less interfering path for wireless multi-hop networks. We also showed the throughput improvement of the proposed scheme through simulations.

A Routing Protocol supporting QoS in WiMAX based Wireless Mesh Networks (WiMAX 기반의 무선 메쉬 네트워크에서 QoS를 지원하는 라우팅 프로토콜)

  • Kim, Min;Kim, Hwa-Sung
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • In this paper, we propose a QoS routing protocol for WiMAX based wireless mesh networks. The proposed routing protocol is a proactive hop-by-hop QoS routing protocol. It can find an optimal route that satisfies QoS requirements using bandwidth and delay as QoS parameters. In this paper, we first present a network model for WIMAX based wireless mesh networks and explain why QoS routing protocol is the most appropriate for WiMAX based wireless mesh networks. Then, we propose a proactive hop-by-hop QoS routing protocol that meets QoS requirements of traffic flowing between mesh client and the gateway. The simulation results show that the proposed routing protocol outperforms QOLSR protocol in terms of end-to-end delay, packet delivery ratio and routing overhead.

Design and Performance Analysis of Multi-hop Routing Protocol for WiMedia (WiMedia를 위한 멀티홉 라우팅 프로토콜 개발 및 성능분석)

  • Jung, Jin-Uk;Lee, Seung-Jin;Jin, Kyo-Hong;Hwang, Min-Tae;Jeon, Young-Ae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1406-1415
    • /
    • 2012
  • Though WiMedia supports the higher data rates than other WPAN technologies, a WiMedia device cannot reach other devices which are apart from it more than 10 meter; the limited transmission range of the WiMedia protocol. In this paper, we propose a multi-hop QoS routing protocol to enable WiMedia devices to transmit real-time data to devices that is located out of transmission range. The proposed routing protocol is a hybrid routing protocol, which is the mixed protocol of table-driven and on-demand routing algorithm. In the proposed protocol, a route for a device within 2-hop is established by using the table-driven routing algorithm and a route for the device beyond 2-hop is established by using the on-demand routing algorithm. We perform ns-2 simulation to investigate the performance of the proposed routing protocol with AODV and DSDV. The simulation results show that the proposed protocol's performance is better than AODV and DSDV in terms of the throughput and delay.

Dual-hop Routing Protocol for Improvement of Energy Consumption in Layered WSN Sensor Field

  • Song, Young-Il;LEE, WooSuk;Kwon, Oh Seok;Jung, KyeDong;Lee, Jong-Yong
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 2016
  • This paper proposes to increase the node energy efficiency, which rapidly drops during the transmission of L-TEEN (Layered Threshold sensitive Energy Efficient sensor Network protocol), using the method of DL-TEEN (Dual-hop Layered TEEN). By introducing dual-hop method in the data transmission, the proposed single-hop method for short-range transmission and multi-hop transmission method between the cluster heads for remote transmission was introduce. By introducing a partial multi-hop method in the data transmission, a single-hop method for short range transmission method between the cluster heads for remote transmission was introduces. In the proposed DL-TEEN, the energy consumption of cluster head for remote transmission reduces and increases the energy efficiency of sensor node by reducing the transmission distance and simplifying the transmission routine for short-range transmission. As compared the general L-TEEN, it was adapted to a wider sensor field.

Hierarchical WSN Dual-hop Routing Protocol for Improvement of Energy Consumption

  • Park, SeaYoung;LEE, WooSuk;Kwon, Oh Seok;Jung, KyeDong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.24-37
    • /
    • 2016
  • This paper proposes to increase the efficiency of energy in nodes, which rapidly drops during the transmission of the Low Energy Adaptive Clustering Hierarchy (LEACH), through the use of dual-hop layered application in the sensor field. Along with introducing the dual-hop method in the data transmission, the proposed single-hop method for short-range transmission and multi-hop transmission method between the cluster heads for remote transmission were also introduced. Additionally, by introducing a partial multi-hop method in the data transmission, a single-hop method for short range transmission method between the cluster heads for remote transmission was used. In the proposed DL-LEACH, the energy consumption of the cluster head for remote transmission reduced, as well as increased the energy efficiency of the sensor node by reducing the transmission distance and simplifying the transmission route for short-range transmission. As compared the general LEACH, it was adapted to a wider sensor field.

Cooperation Models and Cooperative Routing for Exploiting Hop-by-Hop Cooperative Diver sity in Ad Hoc Networks

  • Shin, Hee-Wook;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1559-1571
    • /
    • 2011
  • In wireless ad hoc networks, nodes communicate with each other using multihop routed transmission in which hop-by-hop cooperative diversity can be effectively employed. This paper proposes (i) two cooperation models for per-link cooperation (PLC) and per-node cooperation (PNC) for exploiting cooperative diversity in wireless ad hoc networks and (ii) a cooperative routing algorithm for the above models in which best relays are selected for cooperative transmission. First, two cooperation models for PLC and PNC are introduced and represented as an edge-weighted graph with effective link quality. Then, the proposed models are transformed into a simplified graph and a cooperative routing algorithm with O(n2) time is developed, where n is the number of nodes in the network. The effectiveness of the algorithm is confirmed for the two cooperation models using simulation.