• Title/Summary/Keyword: Homovanillic acid

Search Result 32, Processing Time 0.026 seconds

Potent whitening effects of rutin metabolites (루틴 대사체의 미백 효능)

  • Kim, Ji Hye;Kang, Nam Joo
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.607-612
    • /
    • 2015
  • The aim of this research was to investigate the whitening effects of rutin and rutin metabolites including 3,4-dihydroxyphenyl acetic acid (DHPAA), 3-hydroxyphenyl acetic acid (HPAA), 3,4-dihydroxytolene (DHT) and homovanillic acid (HVA). The potent whitening effect of rutin and rutin metabolites were determined by mushroom tyrosinase inhibition assay and expressed as the half maximal inhibitory concentration ($IC_{50}$) against tyrosinase activity in vitro. The HVA showed the highest inhibitory effect ($IC_{50}=37.10{\mu}M$) of tyrosinase activity, followed by DHPAA ($IC_{50}=45.87{\mu}M$), HPAA ($IC_{50}=50.96{\mu}M$), rutin ($IC_{50}=57.98{\mu}M$), and DHT ($IC_{50}=66.09{\mu}M$), respectively. To evaluate cell cytotoxicity, MTT assay was performed with JB6 P+ mouse epidermal cells and expressed as a relative percentage of untreated control. The results showed that rutin and rutin metabolites had no cytotoxic effects on JB6 P+ cells up to $100{\mu}M$ except for DHT (up to $50{\mu}M$). These results suggests that rutin metabolites may be utilized as a potential tyrosinase inhibitors and the whitening agents for the future.

Antioxidant Activity of Water Extract of Chrysanthemum boreale against MPTP-induced Mice Models (MPTP에 의해 유도된 생쥐의 신경독성에 대한 산국 추출물의 항산화 작용)

  • Kim, Sung Hoon;Choi, Jongwon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • Chrysanthemum boreale(CB) is an oriental medicinal herb which has been used traditionally for the treatment of various brain disease including headache, dizziness and sedation. In order to examine the mechanism of anti-parkinsonism effect, water extract of CB(100 mg and 200 mg/kg of b.w.) were administered orally during 28 days in MPTP-induced parkisonism mice model. Water extract of CB increased the motor activities. CB did not affect total MAO and MAO-B activity in the brain of MPTP-induced mice. CB significantly increased the concentration of lipid peroxidation in the mid brain. Also, CB significantly increased antioxidant enzyme including were SOD, catalase and glutathione peroxidase in the mid brain activity. CB significantly increased the concentration of dopamine and homovanillic acid in the brain. These results suggest that the anti-parkinsonism effect of CB is possibly due to the antioxidative effects at mid brain in MPTP-induced animal model.

Characterization of Norepinephrine Release in Rat Posterior Hypothalamus Using in vivo Brain Microdialysis

  • Sung, Ki-Wug;Kim, Seong-Yun;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • In the present study, we used the microdialysis technique combined with high performance liquid chromatography (HPLC) and electrochemical detection to measure the extracellular levels of norepinephrine (NE) in the posterior hypothalamus in vivo, and to examine the effects of various drugs, affecting central noradrenergic transmission, on the extracellular concentration of NE in the posterior hypothalamus. Microdialysis probes were implanted stereotaxically into the posterior hypothalamus (coordinates: posterior 4.3 mm, lateral 0.5 mm, ventral 8 mm, relative to bregma and the brain surface, respectively) of rats, and dialysate collection began 2 hr after the implantation. The baseline level of monoamines in the dialysates were determined to be: NE $0.17{\pm}0.01,$ 3,4-dihydroxyphenylacetic acid (DOPAC) $0.94{\pm}0.07,$ homovanillic acid (HVA) $0.57{\pm}0.05$ pmol/sample (n=8). When the posterior hypothalamus was perfused with 90 mM potassium, maximum 555% increase of NE output was observed. Concomitantly, this treatment significantly decreased the output of DOPAC and HVA by 35% and 28%, respectively. Local application of imipramine $(50\;{\mu}M)$ enhanced the level of NE in the posterior hypothalamus (maximum 200%) compared to preperfusion control values. But, DOPAC and HVA outputs remained unchanged. Pargyline, an irreversible monoamine oxidase inhibitor, i.p. administered at a dose of 75 mg/kg, increased NE output (maximum 165%), while decreased DOPAC and HVA outputs (maximum 13 and 12%, respectively). These results indicate that NE in dialysate from the rat posterior hypothalamus were neuronal origin, and that manipulations which profoundly affected the levels of extracellular neurotransmitter had also effects on metabolite levels.

Effects of Clozapine of Plasma Monoamine Metabolites in Refractory Schizophrenia (Clozapine이 불응성 정신분열증 환자의 혈장 단가아민에 미치는 영향)

  • Lee, Min Soo;Kim, Seung Hyun;Ryu, Seung Ho
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.262-268
    • /
    • 1996
  • It has been known that clozapine is more selective mesolimbic dopamin $D_2$ receptor antagonist and related to 5-HT receptor. In this study, we wxamined the plasma homovanillic acid(HVA), serotonin(5-HT), and 5-hydroxyindoleacetic acid(5-HIM) levels in refractory schizophrenics during clozapine treatment. And we assessed the effects of clozapine on these plasma monoamine metabolites and their association with psychopathology and treatment response. Eight refractory schizophrenic patients(DSM-IV) have entered the study for 3 months during clozapine treatment. Patients were admitted to the inpatient sevice and withdrawn from all neuroleptics for 7-14 days but exceptionally occasional doses of lorazepam was given if needed for behavioral control. The dose of clozapine was titrated as tolerated to 800mg/day. The plasma HVA. 5-HIM and 5-HT levels were measured before treatment and following 2nd week, 4th week, 8th week, and 12th during treatment. Psychopathology was assessed with Brief Psychiatric Rating Scale (BPRS) and Positive and Negative Synrome Scale(PANSS) before and during clozapine treatment. During clozapine treatment, no statistically significant changes were found in plasma HVA, 5-HIM, 5-HT levels, and HVA/5-HIM ratio between baseline and following 2nd week, 4th week, 8th week, 12th week. However, the change in plasma 5-HIAA/5-HT ratio from baseline to 4th week was statistically significant. Generally, changes of plasma HVA, 5-HIAA, 5-HT levels and HVA/5-HIAA ratio were not associated with psychopathology but 5-HIAA was associated with in positive symptoms and general psychopathology of PANSS. These results suggest that clozapine has been found to have relatively weak dopaminergic blokade and stronger serotonergic antagonism.

  • PDF

Effects of Gypenosides on Dopaminergic Neuronal Cell Death in 6-Hydroxydopamine-lesioned Rat Model of Parkinson's Disease with Long-term L-DOPA Treatment

  • Shin, Keon Sung;Zhao, Ting Ting;Park, Hyun Jin;Kim, Kyung Sook;Choi, Hyun Sook;Lee, Myung Koo
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2016
  • The goal of this study was to determine whether gypenosides (GPS) exert protective effects against dopaminergic neuronal cell death in a 6-hydroxydopamine (OHDA)-lesioned rat model of Parkinson's disease (PD) with or without long-term 3,4-dihydroxyphenylalanine (L-DOPA) treatment. Rats were injected with 6-OHDA in the substantia nigra to induce PD-like symptoms; 14 days after injection, groups of 6-OHDA-lesioned animals were treated for 21 days with GPS (25 or 50 mg/kg) and/or L-DOPA (20 mg/kg). Dopaminergic neuronal cell death was assessed by counting tyrosine hydroxylase (TH)-immunopositive cells in the substantia nigra and measuring levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum. Dopaminergic neuronal cell death induced by 6-OHDA lesions was ameliorated by GPS treatment (50 mg/kg). L-DOPA treatment exacerbated 6-OHDA-induced dopaminergic neuronal cell death; however, these effects were partially reversed by GPS treatment (25 and 50 mg/kg). These results suggest that GPS treatment is protective against dopaminergic neuronal cell death in a 6-OHDA-lesioned rat model of PD with long-term L-DOPA treatment. Therefore, GPS may be useful as a phytotherapeutic agent for the treatment of PD.

Effect of Aloe on Learming and Memory lmpaiments in Dementia Animal Model SAMP8 (치매동물모델 SAMP8에 있어서 기억. 학습장해에 미치는 알로에의 영향 III. SAMP8의 신경전달물질 및 그 대사산물에 미치는 알로에의 투여효과)

  • Choi, Jin-Ho;Kim, Dong-Woo;Kim, Jae-il;Han, Sang-Seop;Shim, Chang-Sub
    • Journal of Life Science
    • /
    • v.6 no.2
    • /
    • pp.142-148
    • /
    • 1996
  • Aloe(Aloe arborescens M$_{ILL}$) has been used as a home medicine for the past several thousand in the world, and has been studied on anti-bacterial and anti-fungal activities, hypotension, atherosclerosis, myocardiac infartion, apoplexy, diabetes as a chronic digenerative disease, tumors, gastrointestinal tract, liver and pancreas' diseases, and genitourinary tract etc. SAMP8 as a learing and memory impairment animal model were fed basic and/or experimental diets with 1.0% freezing dried(FD)-aloe for 8 months. The passive avoidance tests such as acqusition trial and retention test were significantly higher in aloe group than in control group. Grading score of senescence resulted in a marked decreases in aloe group compared with control group. Acetylcholinesterase(AChE) activity was remarkably increased in aloe group compared with control group. Neurotransmitters such as dopamine(DA) and serotonin(5-HT) almost did not change by the feeding of aloe-added diet, but their metabolites such as homovanillic acid(HVA) and 5-hydroxy-indole acetic acid(5-HIAA) in aloe group were significantly increased compared with control group. Therefore, the ratios of HVA/DA and 5-HIAA/5-HT as a ratio of metabolite on neurotransmitter were significantly increased by the feeding of aloe-added diet. These results suggest that aloe vara may be activated acetylcholinesterase, the metabolite of neurotransmitter, and ratios of metabolite on neurotransmitter, resulting ina greater prevention of learning and memory impairments such as Alzheimertype dementia.

  • PDF

Time-Course of [$^3H$]Spiperone Binding and Dopamine Metabolism in the Rat Striatum after Withdrawal from Haloperidol Ttreatment (Haloperidol 투여후 금단기간에 따른 백서 선조체의 [$^3H$]Spiperone 결합 및 Dopamine 대사물질의 변화)

  • Lee, Jung-Yong;Kong, Bo-Geum;Kim, Yong-Kwan;Jung, Chung;Kim, Sun-Hee;Kim, Young-Hoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.51-56
    • /
    • 1996
  • The effects of 3 week treatment with haloperidol(2mg/kg/day, i.p.) on dopamine(DA) D2 receptor and DA metabolism in rat striata were studied at various time points after withdrawal from the drug treatment. Striatal DA D2 receptors were characterized with the radioligand 0.5nM [$^3H$]Spiperone. Dopamine(DA), homovanillic acid(HVA), 3,4-dihydroxyphenyl acetic acid(DOPAC) in rat striatum were measured with the high performance liquid chromatography. Drug withdrawal for 1 week induced significant increase in the number of D2 receptor in striatum after withdrawal for 1 week(p<0.05), and then this change was restored to control level during the withdrawal time of 2 and 4 weeks. There was no difference in striatal concentrations of DA and its metabolites among the groups. In conclusion, one-week withdrawal from chronic haloperidol treatment induced DA D2 receptor supersensitivity in the striatum, and that was normalized rapidly. Though this adaptive change in DA receptors, it may not affect the metabolism of DA in striatum.

  • PDF

Combined Treatment with 5-Fluorouracil and Capsaicin Induces Apoptosis in HT-29 Human Colon Cancer Cells (5-Fluorouracil과 Capsaicin의 병용에 의한 HT-29 대장암세포 사멸 증진 효과)

  • Lee, Yun-Seok;Lee, Jong-Suk;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.53 no.4
    • /
    • pp.184-188
    • /
    • 2009
  • Fluorouracil (5-FU) is one of the most widely used chemotherapeutic drugs in the treatment of advanced colorectal cancer patients. Capsaicin (N-vanillyl-8-methyl-alpha-nonenamide), a spicy component of hot pepper, is a homovanillic acid derivative that preferentially induces cancer cells to undergo apoptosis. The purpose of the present study is to examine whether capsaicin enhances the anticancer effect of 5-fluorouracil in HT-29 human colon cancer cells by inducing apoptosis, and whether PPARgamma is involved in the capsaicin action in combination treatment with 5-FU. Treatment of the cells with either 5-FU or capsaicin alone for 48 h had little effect on the cell viability up to $50{\mu}M$ concentration, whereas co-treatment of the cells with capsaicin in the presence of 5-FU for 48 h significantly decreased the cell viability in a concentration-dependent manner. In addition, caspase-3 activity, a marker enzyme for apoptosis, was significantly increased by the combined treatment with 5-FU and capsaicin compared to the 5-FU or capsaicin alone treatment. Also, treatment with troglitazone, a peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) agonist, further enhanced the effect of the combination treatment on the cell viability and caspase-3 activity, and bisphenol A diglycidyl ether (BADGE), a $PPAR{\gamma}$ antagonist, blocked the effect of the combination treatment. These results suggest that the combination treatment of HT-29 cells with 5-FU and capsaicin induces apoptotic cell death at relatively low concentration than each drug alone, and the combination treatment may be associated with the $PPAR{\gamma}$ pathway activation.

Effect of Ephedrine on the Levels of Biogenic Amines and Their Metabolites in Rat Brain (Ephedrine이 뇌내 Biogenic Amine 함량에 미치는 영향)

  • Lee, Kyung-Eun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.153-164
    • /
    • 1995
  • Sympathomimetic amines, especially ephedrine, are a major ingredient in proprietary medications for symptomatic treatment of upper respiratory infections. Their frequent uses can lead to occasional instances of abuse and habituation. The clinical symptoms of ephedrine abuse are similar to that of amphetamine psychosis and resemble closely that of schizophrenia. Because both amphetamine psychosis and schizophrenia are thought to be mediated primarily through the action on catecholamines, ephedrine-induced changes of the biogenic amines can be suspected. However, there were few studies about the central effects of ephedrine because of the milder central action than peripheral. Therefore, the present investigation was undertaken to elucidate the relations between the effects of single or repeated administration of ephedrine on the regional levels of biogenic amines in rat brain and ephedrine-induced CNS stimulation. The male Sprague-Dawley rats weighing $100{\sim}200\;g$ were used. After single or repeated administrations of ephedrine, blocks of tissue were obtained from frontal cortex, corpus striatum, hippocampus, thalamus, hypothalamus, substantia nigra and cerebellum. The concentration of biogenic amines(norepinephrine, epinephrine, dopamine, 5-hydroxytryptamine(5-HT)) and their metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid(HVA), 5-hydroxyindoleacetic acid(5-HIAA)) were measured by means of high performance liquid chromatography-electrochemical detector(HPLC-ECD). The results obtained were as follows: 1) In the normal rat, the concentration of norepinephrine was the highest in hypothalamus. Dopamine, DOPAC and HVA were highest in corpus striatum, and 5-HT and 5-HIAA were highest in substantia nigra. Epinephrine was not detectable in any part of the brain tissue. 2) In a single administration of ephedrine, the concentration of DOPAC was decreased in corpus striatum. However, the other biogenic amines and their metabolites were not changed. 3) In repeated administration of ephedrine, the concentration of norepinephrine was decreased in all brain region checked. Dopamine was decreased in corpus striatum and substantia nigra and, increased in hypothalamus, and HVA was decreased in corpus striatum. 5-HT was decreased in all brain region except cerebellum and, 5-HIAA was decreased only in frontal cortex. The ratio of 5-HIAA/5-HT was increased in corpus striatum, thalamus, hypothalamus and substantia nigra. These data indicated that, although a single administration of ephedrine did not change the central neurotransmitters, repeated administration of ephedrine caused the decreases of norepinephrine and 5-HT in the most regions of brain, which may be responsible for the emergence of abnormal behavioral effect after ephedrine abuse.

  • PDF

Neuroprotective Effects of Herbal Ethanol Extract from Gynostemma pentaphyllum on Dopamine Neurons in Rotenone- and MPTP-induced Animal Model of Parkinson's Disease (Rotenone- 및 MPTP-유도 파킨슨병 동물 모델에서 돌외 에탄올 추출물의 Dopamine 신경세포 보호작용)

  • Suh, Kwang Hoon;Choi, Hyun Sook;Shin, Kun Seong;Zhao, Ting Ting;Kim, Seung Hwan;Hwang, Bang Yeon;Lee, Chong Kil;Lee, Myung Koo
    • YAKHAK HOEJI
    • /
    • v.57 no.2
    • /
    • pp.77-86
    • /
    • 2013
  • The neuroprotective effects of herbal ethanol extract (GP-EX) from Gynostemma pentaphyllum on dopamine neurons in animal model of Parkinson's disease (PD) were investigated. Rats and mice were administered with rotenone (2.5 mg/kg) for 28 days and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) for 5 days for the PD models, respectively and the animals were simultaneously treated with GP-EX (30 mg/kg, daily). After preparing the PD models, the animals were also administered with L-DOPA (10 mg/kg) for 14 days with or without GP-EX treatment. Treatment with GP-EX (30 mg/kg) inhibited the rotenone- and MPTP-induced neurotoxic effects in dopamine neurons of rats or mice, which was determined by the numbers of tyrosine hydroxylase-immunohistochemical staining survival cells, as well as the levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid. GP-EX (30 mg/kg) also showed the protective effects on neurotoxicity which was induced by long-term administration of L-DOPA (10 mg/kg) in rotenone- and MPTP-induced animal model of PD. The used doses of GP-EX (30 mg/kg) did not produce any signs of toxicity, such as weight loss, diarrhea, or vomiting, in rats and mice during the treatment periods. These results suggest that GP-EX has the protective functions against chronic L-DOPA-induced neurotoxic reactions in dopamine neurons of rotenone- and MPTP-induced animal model of PD. Therefore, the natural GP-EX may be beneficial in the prevention of PD progress and L-DOPA-induced neurotoxicity in PD patients.