• 제목/요약/키워드: Homology Model

검색결과 101건 처리시간 0.031초

Development of an Analysis Program of Type I Polyketide Synthase Gene Clusters Using Homology Search and Profile Hidden Markov Model

  • Tae, Hong-Seok;Sohng, Jae-Kyung;Park, Kie-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.140-146
    • /
    • 2009
  • MAPSI(Management and Analysis for Polyketide Synthase Type I) has been developed to offer computational analysis methods to detect type I PKS(polyketide synthase) gene clusters in genome sequences. MAPSI provides a genome analysis component, which detects PKS gene clusters by identifying domains in proteins of a genome. MAPSI also contains databases on polyketides and genome annotation data, as well as analytic components such as new PKS assembly and domain analysis. The polyketide data and analysis component are accessible through Web interfaces and are displayed with diverse information. MAPSI, which was developed to aid researchers studying type I polyketides, provides diverse components to access and analyze polyketide information and should become a very powerful computational tool for polyketide research. The system can be extended through further studies of factors related to the biological activities of polyketides.

Cytokine-Inducing and T Cell Mitogenic Effects of Cordyceps hepialidicola

  • Lim, Jong-Soon;Kim, Seung-Hyung;Park, Jeong-Youl;Park, Jin-Seo;Park, Seong-Joo;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • 제39권3호
    • /
    • pp.181-185
    • /
    • 2001
  • The morphological characteristics of newly isolated Cordyceps hepialidicola were characterized, and the phylogenetic relationships with other Cordyceps species were investigated using a sequence analysis of the internal transcribed spacer (ITS). The PCR product of 592 bp showed a homology of 92 and 91% with C. militaris and C. nutans, respectively, In an in vitro model using mouse peripheral blood mononuclear cells (PBMC), a methanol extract of C. hepialidicola induced multiple cytokines, including IFN-${\gamma}$ IL-4, and IL-18. The extract also enhanced the percentages of the CD4$\^$+/ and CD8$\sub$+/ T cells in the healthy murine PBMCs to 56.1% and 13.0%,respectively. The percentages of CD4$\^$+/ and CD8$\^$+/ in the untreated controls were 28.4 and 7.3%, and concanavalin A-treated positive controls were 62.4 and 18.3%, respectively.

  • PDF

Tra2${\alpha}$ and hnRNP K might be Functional Partners of Rbm for Regulation of RNA Processes during Spermatogenesis

  • Lee, Jungmin;Kim, Euisu;Jang, Sung Key;Rhee, Kunsoo
    • Animal cells and systems
    • /
    • 제8권1호
    • /
    • pp.65-70
    • /
    • 2004
  • Rbm is a male infertility gene located in the AZFb region of the Y chromosome. Expression pattern of Rbm indicates that Rbm is critical for early phase of male germ cell development. It shares strong structural homology with hnRNP G, suggesting a function as an RNA processing factor. In order to gain a clue on the molecular mechanisms of Rbm on male germ cell development, we examined interactions of Rbm with selected proteins in yeast. The results revealed specific interactions between Rbm, hnRNP K and Tra2${\alpha}$. These results suggest that hnRNP K and Tra2${\alpha}$ may be functional partners of Rbm in male germ cells. We propose a model in which hnRNP K may playa role as a platform for Rbm and Tra2${\alpha}$.

Structural Assignment of a Type II PHA Synthase and an Insight Into Its Catalytic Mechanism Using Human Gastric Lipase as the Modeling Template

  • Khairudin, Nurul Bahiyah Ahmad;Samian, Mohd Razip;Najimudin, Nazalan;Wahab, Habibah A
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.173-182
    • /
    • 2005
  • A three dimensional (3D) model for the catalytic region of Type II Pseudomonas sp. USM 4-55 PHA synthase 1 (PhaC1$_{P.sp\;USM\;4-55}$) from residue 267 to residue 484 was developed. Sequence analysis demonstrated that PhaC1$_{P.sp\;USM\;4-55}$ lacked homology with all known structural databases. PSI-BLAST and HMM Superfamily analyses demonstrated that this enzyme belongs to the ${\alpha}/{\beta}$ hydrolase fold family. Threading approach revealed that the most suitable template to use was the Human gastric lipase (1HLG). The superimposition of the predicted PhaC1$_{P.sp\;USM\;4-55}$ model with the 1HLG template structure covering 86.2% of the backbone atoms showed an RMSD of 1.15 ${\AA}$ The catalytic residues comprising of Cys296, Asp451, His452 and His479 were found to be conserved and were located adjacent to each other. We proposed that the catalytic mechanism involved the formation of two tetrahedral intermediates.

  • PDF

일반 등방경화규칙에 의거한 점토의 비등방 탄소성 구성모델 (An Anisotropic Elasto-Plastic Constitutive Model Based on the Generalized Isotropic Hardening Rule for Clays)

  • 이승래;오세붕
    • 한국지반공학회지:지반
    • /
    • 제10권3호
    • /
    • pp.17-32
    • /
    • 1994
  • 역재하시에 나타나는 흙의 비등방거동을 모델하기 위하여, 본 연구에서는 일반 등방경화규칙에 근거한 비등방 경화이론을 개발하였다. 일반 등방규칙은 등방경화의 기준이 되는 중심응력텐서가 임의의 응력상태에서 존재할 수 있도록 허용하므로, 역재하과정에서 발생하는 소성변형을 예측할 수가 있다. 제안된 구성모델은 단순한 경화함수만을 이용하여 수식화되었고, 일반등방경 화규칙에 적용된 개념을 기존의 비등방경화규칙과 비교하여 서술하였다. 검증을 위하여, 배수 및 비배수조건, 과압밀상태, Ko 압밀등의 초기조건이 상이한 점토에 대하여 관측된 삼축압축시료의 거동을 예측하였다.

  • PDF

GenScan을 이용한 진핵생물의 서열 패턴 분석 (Anlaysis of Eukaryotic Sequence Pattern using GenScan)

  • 정용규;임이슬;차병헌
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권4호
    • /
    • pp.113-118
    • /
    • 2011
  • 서열 상동성 분석은 생명현상에 관여하는 물질을 정렬, 색인하여 데이터베이스 하는 것으로, 생명정보학의 유용성을 입증하는 분야이다. 본 논문에서는 구조가 복잡한 진핵생물의 서열 패턴을 단백질 서열로 변환하기 위해 은닉마르코프모델을 이용하는 GenScan 프로그램을 이용한다. 서열상동성 분석 중 최소거리 탐색 문제는 문제의 크기가 커지면 계산량이 기하급수적으로 증가하여 정확한 계산이 불가능해진다. 따라서 유사한 아미노산간의 치환과 상이한 아미노산간의 치환 점수를 차등화한 점수표를 적용하고, 은닉마르코프모델 등을 적용해 정교한 전이 확률모델을 적용한다. 변환된 서열을 서열 상동성 분석을 위해 사용되는 blast p를 이용하여, 은닉 마르코프 모델을 도입함으로 인해 단백질 구조 서열로 변환하는 데에 있어서 우수한 기능을 제공함을 알 수 있다.

Genetic Variation of Rice Populations Estimated Using nrDNA ITS Region Sequence

  • Wang, Dong;Hong, Soon-Kwan
    • 한국자원식물학회지
    • /
    • 제27권3호
    • /
    • pp.249-255
    • /
    • 2014
  • The rice belonging to Oryza sativa is not only has significant economic importance, for it is the major source of nutrition for about 3 billion all around the world. But also plays a vital role as a model organism, because it has a number of advantages to be a model plant, such as efficient transformation system and small genome size. Many methods and techniques have been conducted to attempt to distinguish different Oryza sativa species, such as amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) and so on. However, studies using sequence analysis of internal transcribed spacer (ITS), a region of ribosomal RNA has not been reported until now. This study was undertaken with an aim to understand the phylogenetic relationships among sixteen isolates of Oryza sativa collected from abroad and fifteen isolates collected from Korea, using ribosomal RNA (rRNA) internal transcribed spacer (ITS) sequences to compare the phylogeny relationships among different Oryza sativa species. The size variation obtained among sequenced nuclear ribosomal DNA (nrDNA) ITS region ranged from 515bp to 1000bp. The highest interspecific genetic distance (GD) was found between Sfejare 45 (FR12) and Anapuruna (FR15). Taebong isolate showed the least dissimilarity of the ITS region sequence with other thirty isolates. This consequence will help us further understanding molecular diversification in intra-species population and their phylogenetic analysis.

In silico detection and characterization of novel virulence proteins of the emerging poultry pathogen Gallibacterium anatis

  • L. G. T. G. Rajapaksha;C. W. R. Gunasekara;P. S. de Alwis
    • Genomics & Informatics
    • /
    • 제20권4호
    • /
    • pp.41.1-41.9
    • /
    • 2022
  • The pathogen Gallibacterium anatis has caused heavy economic losses for commercial poultry farms around the world. However, despite its importance, the functions of its hypothetical proteins (HPs) have been poorly characterized. The present study analyzed the functions and structures of HPs obtained from Gallibacterium anatis (NCTC11413) using various bioinformatics tools. Initially, all the functions of HPs were predicted using the VICMpred tool, and the physicochemical properties of the identified virulence proteins were then analyzed using Expasy's ProtParam server. A virulence protein (WP_013745346.1) that can act as a potential drug target was further analyzed for its secondary structure, followed by homology modeling and three-dimensional (3D) structure determination using the Swiss-Model and Phyre2 servers. The quality assessment and validation of the 3D model were conducted using ERRAT, Verify3D, and PROCHECK programs. The functional and phylogenetic analysis was conducted using ProFunc, STRING, KEGG servers, and MEGA software. The bioinformatics analysis revealed 201 HPs related to cellular processes (n = 119), metabolism (n = 61), virulence (n = 11), and information/storage molecules (n = 10). Among the virulence proteins, three were detected as drug targets and six as vaccine targets. The characterized virulence protein WP_013745346.1 is proven to be stable, a drug target, and an enzyme related to the citrate cycle in the present pathogen. This enzyme was also found to facilitate other metabolic pathways, the biosynthesis of secondary metabolites, and the biosynthesis of amino acids.

Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase

  • Hyun, Jeongwoo;Abigail, Maria;Choo, Jin Woo;Ryu, Jin;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1708-1716
    • /
    • 2016
  • Glucose dehydrogenase (GDH) is an oxidoreductase enzyme and is used as a biocatalyst to regenerate NAD(P)H in reductase-mediated chiral synthesis reactions. In this study, the glucose 1-dehydrogenase B gene (gdhB) was cloned from Bacillus thuringiensis subsp. kurstaki, and wild-type (GDH-BTWT) and His-tagged (GDH-BTN-His, GDH-BTC-His) enzymes were produced in Escherichia coli BL21 (DE3). All enzymes were produced in the soluble forms from E. coli. GDH-BTWT and GDH-BTN-His showed high specific enzymatic activities of 6.6 U/mg and 5.5 U/mg, respectively, whereas GDH-BTC-His showed a very low specific enzymatic activity of 0.020 U/mg. These results suggest that the intact C-terminal carboxyl group is important for GDH-BT activity. GDH-BTWT was stable up to 65℃, whereas GDH-BTN-His and GDH-BTC-His were stable up to 45℃. Gel permeation chromatography showed that GDH-BTWT is a dimer, whereas GDH-BTN-His and GDH-BTC-His are monomeric. These results suggest that the intact N- and C-termini are required for GDH-BT to maintain thermostability and to form its dimer structure. The homology model of the GDH-BTWT single subunit was constructed based on the crystal structure of Bacillus megaterium GDH (PDB ID 3AY6), showing that GDH-BTWT has a Rossmann fold structure with its N- and C-termini located on the subunit surface, which suggests that His-tagging affected the native dimer structure. GDH-BTWT and GDH-BTN-His regenerated NADPH in a yeast reductase-mediated chiral synthesis reaction, suggesting that these enzymes can be used as catalysts in fine-chemical and pharmaceutical industries.

Theoretical Investigations on Structure and Function of Human Homologue hABH4 of E.coli ALKB4

  • Shankaracharya, Shankaracharya;Das, Saibal;Prasad, Dinesh;Vidyarthi, Ambarish Sharan
    • Interdisciplinary Bio Central
    • /
    • 제2권3호
    • /
    • pp.8.1-8.5
    • /
    • 2010
  • Introduction: Recently identified human homologues of ALKB protein have shown the activity of DNA damaging drugs, used for cancer therapy. Bioinformatics study of hABH2 and hABH3 had led to the discovery of a novel DNA repair mechanism. Very little is known about structure and function of hABH4, one of the members of this superfamily. Therefore, in present study we are intended to predict its structure and function through various bioinformatics tools. Materials and Methods: Modeling was done with modeler 9v7 to predict the 3D structure of the hABH4 protein. This model was validated with the program Procheck using Ramachandran plot statistics and was submitted to PMDB with ID PM0076284. The 3d2GO server was used to predict the functions. Residues at protein ligand and protein RNA binding sites were predicted with 3dLigandSite and KYG programs respectively. Results and Discussion: 3-D model of hABH4, ALKBH4.B99990003.pdb was predicted and evaluated. Validation result showed that 96.4 % residues lies in favored and additional allowed region of Ramachandran plot. Ligand binding residues prediction showed four Ligand clusters, having 24 ligands in cluster 1. Importantly, conserved pattern of Glu196-X-Pro198- Xn-His254 in the functional domain was detected. DNA and RNA binding sites were also predicted in the model. Conclusion and Prospects: The predicted and validated model of human homologue hABH4 resulted from this study may unveil the mechanism of DNA damage repair in human and accelerate the research on designing of appropriate inhibitors aiding in chemotherapy and cancer related diseases.