• Title/Summary/Keyword: Homologue

Search Result 222, Processing Time 0.023 seconds

Synthesis and Characterization of Pentarylene Bisimide Derivative as NIR Colorant (NIR Colorant용 Pentarylene Bisimide의 합성 및 특성 연구)

  • Baek, Kwan;Jeong, Yeon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.140-146
    • /
    • 2012
  • A variety of dyes are commercially available today, there is an ongoing need for new chromophoric systems and low-band-gap materials. For example, near-infrared (NIR) emission has received increased attention for applications in bioassays and medicine while NIR absorption is demanded for laser-welding of plastics or efficient blocking of heat rays. Most of the commercially available NIR materials are not suitable for such purposes owing to their insufficient stability. We have developed a novel NIR-absorbing polyaromatic dye. By extending the system of perylenebis(dicarboximide)s along the molecular long axis, we have obtained the higher homologue pentarylenebis(dicarboximide). We have tried to introduce imide functional group to pentarylene in order to increase chemical and thermal stability.

Structure and apoptotic function of p73

  • Yoon, Mi-Kyung;Ha, Ji-Hyang;Lee, Min-Sung;Chi, Seung-Wook
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.81-90
    • /
    • 2015
  • p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis.

Overexpression of AtCAF1, CCR4-associated factor 1 homologue in Arabidopsis thaliana, negatively regulates wounding-mediated disease resistance

  • Kwon, Tack-Min;Yi, Young-Byung;Nam, Jae-Sung
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.278-284
    • /
    • 2011
  • The CCR4-CAF1-NOT complex-mediated degradation of mRNA is a fundamental aspect of gene regulation in eukaryotes. We herein examined the role of AtCAF1 in the innate immune and wound responses of plants. Our results showed that overexpression of AtCAF1 significantly downregulated the transcript level of EFR but not FLS2 and BRI1, as well as abolished up-regulated expression pattern of EFR in response to wounding. Consistently, Agrobacteriummediated transient expression of GUS was highly enhanced in the transgenic plants overexpressing AtCAF. Furthermore, JA responsive genes were down-regulated by overexpression of AtCAF, causing the transgenic plants overexpressing AtCAF more susceptible to necrotrophic fungal pathogen, Botrytis cinerea. These results suggest that The CCR4-CAF1-NOT complex-mediated degradation of mRNA negatively regulates wounding-mediated disease resistance in Arabidopsis thaliana.

Molecular Cloning and Nucleotide Sequence of Amaranthus viridis Homologue of the H -Transporting ATPase Gene (비름에서 ATP 가수분해효소와 상동성을 가지는 유전자의 클로닝)

  • 한규웅
    • Journal of Life Science
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 1996
  • Using differential hybridization, a cDNA clone was isolated fortuitously from Amaranthus viridis and sequenced. This nucleotide sequence exhibited 55.1% identity with vma6 which encodes the 36-kD subunit of the vacuolar proton transporting ATPase in Saccharmoyces cerevisiae. The predicted open reading frame encodes a protein of 221 amino acid sequence with a calculated molecular weight of 25,452 and reveals high levels of similarity with subunit D polypeptide of vacuolar H -ATP(e.g., 48.5, 52.1 and 49.3% identity to the vacuolar 36-kD chain of yeast, vacuolar 32-kD polypeptide IV of human and vacuolar 28-kD protein of bovine chromaffin granules, respectively). The hydropathy index computation revealed that this predicted protein is a peripheral protein. These results indicated that the predicted protein may play a sturctural role in the vaculor H -ATPase as does gamma subunit in V-type ATPase.

  • PDF

Upstream Regulators and Downstream Effectors of NADPH Oxidases as Novel Therapeutic Targets for Diabetic Kidney Disease

  • Gorin, Yves;Wauquier, Fabien
    • Molecules and Cells
    • /
    • v.38 no.4
    • /
    • pp.285-296
    • /
    • 2015
  • Oxidative stress has been linked to the pathogenesis of diabetic nephropathy, the complication of diabetes in the kidney. NADPH oxidases of the Nox family, and in particular the homologue Nox4, are a major source of reactive oxygen species in the diabetic kidney and are critical mediators of redox signaling in glomerular and tubulointerstitial cells exposed to the diabetic milieu. Here, we present an overview of the current knowledge related to the understanding of the role of Nox enzymes in the processes that control mesangial cell, podocyte and tubulointerstitial cell injury induced by hyperglycemia and other predominant factors enhanced in the diabetic milieu, including the renin-angiotensin system and transforming growth factor-${\beta}$. The nature of the upstream modulators of Nox enzymes as well as the downstream targets of the Nox NADPH oxidases implicated in the propagation of the redox processes that alter renal biology in diabetes will be highlighted.

A Short Review on Human Functional Neuropeptide Y Receptors

  • Kothandan, Gugan;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Neuropeptide Y (NPY), a 36-amino acid polypeptide, is a member of the pancreatic polypeptide family, which consists of NPY, peptide YY (PYY) and pancreatic polypeptide (PP). The neuropeptide Y (NPY) receptors called Y receptors belongs to G-protein coupled that are involved in a variety of physiological functions such as appetite regulation, circadian rhythm and anxiety. Five receptor subtypes have been cloned in mammals (Y1, Y2, Y4, Y5, and Y6) of which four are functional. In this short review, information about the functional NYP receptors was analyzed. Sequence analyses were done between these receptors to identify the relationships between them. Phylogram was generated between these receptors to identify the close homologue between these receptors. Our sequence analyses found that Y1 and Y4 receptors are close than the other receptors. Further structure based analysis could be useful to identify subtype selective antagonists and dual antagonists targeting Y1 and Y4 receptors.

Possible Roles of LAMMER Kinase Lkh1 in Fission Yeast by Comparative Proteome Analysis

  • Cho, Soo-Jin;Kim, Young-Hwan;Park, Hee-Moon;Shin, Kwang-Soo
    • Mycobiology
    • /
    • v.38 no.2
    • /
    • pp.108-112
    • /
    • 2010
  • To investigate the possible roles of LAMMER kinase homologue, Lkh1, in Schizosaccharomyces pombe, whole proteins were extracted from wild type and lkh1-deletion mutant cells and subjected to polyacrylamide gel electrophoresis. Differentially expressed proteins were identified by tandem mass spectrometry (MS/MS) and were compared with a protein database. In whole-cell extracts, 10 proteins were up-regulated and 9 proteins were down-regulated in the mutant. In extracellular preparations, 6 proteins were up-regulated in the lkh1+ null mutant and 4 proteins successfully identified: glycolipid anchored surface precursor, $\beta$-glucosidase (Psu1), cell surface protein, glucan 1,3-$\beta$-glucosidase (Bgl2), and exo-1,3 $\beta$-glucanase (Exg1). These results suggest that Lkh1 is involved in regulating cell wall assembly.

Sequence analysis of the schizosaccharomycs pombe homologue of the CDC3 gene in saccharomyces cerevisiae

  • Kim, Hyong-Bai
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.350-354
    • /
    • 1995
  • Saccharomyces cervisiae has a highly ordered ring of filaments that lies just inside the cytoplasmic membrane in the region of the mother-bud neck. Mutants defective in any one of the our cell division cycle genes (CDC3, CDC10, CDC11, CDC12) fail to form these filaments and exhibit a pleiotropic phenotype that includes failure to complete cytokinesis and abnormal bud growth. However, the role of the filament is not clear. In order to find out the role of filament, the similar gene in S pombe (called cdc103$\^$+) to the CDC3 was cloned and sequenced. Here I report the sequence analysis of the cdc103$\^$+/ ) to the CDC3 was cloned and sequenced. Here I report the sequence analysis of the cdc103$\^$+/. Comparison of the predicted amino acid sequences of cdc103$\^$+/ and CDC3 revealed that they share significant similarity (43% identity and 56% identity or similarity) to each other.

  • PDF