• 제목/요약/키워드: Homogenized method

검색결과 130건 처리시간 0.024초

Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-I: Theory and Method

  • Lee, Yoonhee;Cho, Bumhee;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.650-659
    • /
    • 2016
  • As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

A Generalized Model for Homogenized Reflectors

  • Pogosbekyan, Leonid;Kim, Yeong-Il;Kim, Young-Jin;Joo, Hyung-Kook
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.40-45
    • /
    • 1996
  • A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the celt interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K.Koebke and K.Smith. The method of K.Smith can be simulated within framework of new method, while the new method approximates heterogeneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are: improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K.Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b) control blades simulation; (c) mixed UO2/MOX core simulation, The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in- core conditions.

  • PDF

Treatment of non-resonant spatial self-shielding effect of double heterogeneous region

  • Tae Young Han;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.749-755
    • /
    • 2023
  • A new approximation method was proposed for treating the non-resonant spatial self-shielding effects of double heterogeneous region such as the double heterogeneous effect of VHTR fuel compact in the thermal energy range and that of BP compact with BISO. The method was developed based on the effective homogenization method and a spherical unit cell model with explicit coated layers and a matrix layer. The self-shielding factor was derived from the relation between the collision probabilities for a double heterogeneous compact and the effective cross section for the homogenized compact. First, the collision probabilities and transmission probabilities for all layers of the spherical model were calculated using conventional collision probability solver. Then, the effective cross section for the homogenized sphere cell representing the homogenized compact was obtained from the transmission probability calculated using the probability density function of a chord length. The verification calculations revealed that the proposed method can predict the self-shielding factor with a maximum error of 2.3% and the double heterogeneous effect with a maximum error of 200 pcm in the typical VHTR problems with various packing fractions and BP compact sizes.

Homogenized thermal properties of 3D composites with full uncertainty in the microstructure

  • Ma, Juan;Wriggers, Peter;Li, Liangjie
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.369-387
    • /
    • 2016
  • In this work, random homogenization analysis for the effective thermal properties of a three-dimensional composite material with unidirectional fibers is presented by combining the equivalent inclusion method with Random Factor Method (RFM). The randomness of the micro-structural morphology and constituent material properties as well as the correlation among these random parameters are completely accounted for, and stochastic effective thermal properties as thermal expansion coefficients as well as their correlation are then sought. Results from the RFM and the Monte-Carlo Method (MCM) are compared. The impact of randomness and correlation of the micro-structural parameters on the random homogenized results is revealed by two methods simultaneously, and some important conclusions are obtained.

다채널 3T 자기공명장치에서의 Compressed B1 제어법 (Compressed B1 Control Method in Multi-channel 3 T MRI)

  • 유형석
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1120-1124
    • /
    • 2013
  • Our objective of this study was to reduce radio frequency coil (RF) control time at 3 T MRI systems. A compressed method is proposed with a convex optimization and pseudo-inverse method in multi-channel RF coils. After applying the proposed methods, fields are homogenized with less field data. Even with 80% compression, the fields are well homogenized and localized, indicating that mapping requires only 20% of the original data. Detailed values are compared between each compressed result in and outside the region of interest at 3 T.

정자장 문제의 균질화 기법의 비교 (Comparison of Homogenization Techniques in Magnetostatic Field Problems)

  • 최재석;유정훈
    • 대한기계학회논문집A
    • /
    • 제31권3호
    • /
    • pp.388-394
    • /
    • 2007
  • Many engineering problems require the calculation of effective material properties of a structure which is composed of repeated micro-structures. The homogenization method has been used to calculate the effective (homogenized) properties of composites and several homogenization procedures for different physical fields have been introduced. This research describes the modified homogenization technique for magnetostatic problems. Assuming that the material is periodically repeated, its effective permeability can be prescribed by calculating the homogenized magnetic reluctivity using the finite element analysis of the micro unit cell. Validity of the suggested method is confirmed by comparing the results by the energy based method as well as the widely known homogenization method.

Evaluation of Effective Stiffness for 3D Beam with Repeated Structure

  • Chung, Il-Sup
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.25-29
    • /
    • 2006
  • Analysis of structures which are composed of numerous repeated unit structures can be simplified by using homogenized properties. If the unit structure is repeated in one direction, the whole structure may be regarded as a beam. Once the effective stiffness is obtained from the analysis of the unit structure in a proper way, the effort for the detail modeling of the global structure is not required, and the real structure can be replaced simply with a beam. This study proposes a kinematical periodicity constraint to be imposed on the FE model of the unit structure, which improves the accuracy of the effective stiffness. The method is employed to a one dimensionally arrayed 3D structure containing periodically repeated unsymmetrical holes. It is demonstrated that the deformation behavior of the homogenized beam agrees well with that of the real structure.

Development and verification of pin-by-pin homogenized simplified transport solver Tortin for PWR core analysis

  • Mala, Petra;Pautz, Andreas
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2431-2441
    • /
    • 2020
  • Currently, the pin-by-pin homogenized solvers are a very active research field as they can, unlike the nodal codes, directly predict the local power, while requiring significantly less computational resources than the heterogeneous transport codes. This paper presents a recently developed pin-by-pin diffusion/SP3 solver Tortin, its spatial discretization method and the reflector treatment. Regarding the spatial discretization, it was observed that the finite difference method applied on pin-cell size mesh does not properly capture the big flux change between MOX and uranium fuel, while the nodal expansion method is more accurate but too slow. If the finite difference method is used with a finer mesh in the outer two pin rows of the fuel assembly, it increases the required computation time by only 50%, but decreases the pin power errors below 1% with respect to lattice code reference solutions. The paper further describes the coupling of Tortin with a microscopic depletion solver. Several verification tests show that the SP3 pin-by-pin solver can reproduce the heterogeneous transport solvers results with very good accuracy, even for fuel cycle depletion of very heterogeneous core employing MOX fuel or inserted control rods, while being two orders of magnitude faster.

정적 내공변위를 이용한 터널라이닝 손상 검출기법에 관한 연구 (A Study on the System Identification of Tunnel Lining Using Static Deformation Data)

  • 이준석;최일윤
    • 한국지반공학회논문집
    • /
    • 제18권6호
    • /
    • pp.153-160
    • /
    • 2002
  • 본 연구에서는 터널 내공변위 계측데이터를 이용한. 라이닝 구조물의 손상도 평가기법에 대하여 논의하였다. 이를 위하여 정적으로 획득되는 내공변위 데이터와 라이닝의 자중을 고려하여 라이닝내 발생가능한 손상의 위치 및 정도를 파악할 수 있는 일종의 역해석 기법을 도입하였다. 특히 라이닝 요소내 강성도를 일정수준 저감하는 모형 1과 분산형 균열모델을 응용한 모형 2 등 두 가지 방법을 고려하였고 각각의 장단점을 비교.분석하였다. 이상적인 터널라이닝 구조물을 가정하여 두 가지 모형에 대한 수치해석을 실시하였으며 계측데이터에 포함되는 노이즈의 영향을 함께 고려하였다. 이 결과, 모형 1의 경우, 노이즈의 영향은 상대적으로 미미하나 내공변위에 민감하게 작용하므로 현장적용시 주의가 요구되며 모형 2의 경우에는 노이즈에 민감하게 작용하는 반면 강성도의 저감량이 미소하여 실제 터널라이닝 구조물의 손상파악에 손쉽게 적용될 수 있음을 보였다.

PWR 소격격자 Nodal 계산에의 균질화 이론 적용 (An Application of Homogenization Theory to the Coarse-Mesh Nodal Calculation of PWRs)

  • Myung Hyun Kim;Jonghwa Chang;Kap Suk Moon;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • 제16권4호
    • /
    • pp.202-216
    • /
    • 1984
  • Nodal method가 소격격자 해석방법의 하나로 정립됨으로써, 계산격자가 비교적 크더라도 각 격자의 평균출력분포를 정확히 계산할 수 있게 하는 균질화변수틀 찾는 방법이 중요하게 되었다. 본 연구에서는 simplified equivalence theory와 approximate node equivalence theory의 두가지 근사방법을 가압경수형 원자로 문제에 적응하여 시험하여 보았다. 균질화계산과 노심분석계산 방법으로서 analytic nodal method에 기초를 둔 ANM 코드를 개발하였다. 여러 균질화 방법외 정확성을 KTDD 코드에 의한 reference solution과 비교하여 본 결과, 균질화 계산은 핵연료영역에서는 영역별 핵연료집합체 계산으로, baffle과 reflector의 공존 격자영역은 이들을 포함하는 color set 계산으로 수행할 수 있음을 알았다. Approximate node equivalence theory에 입각해서 approximate homogenized cross-section들과 approximate discontinuity factor들의 균질화 변수를 사용하면 출력분포와 임계도가 각각 0.8%, 0,1% 오차 범위내에서 예측되었다.

  • PDF