• Title/Summary/Keyword: Homogenization Method

Search Result 257, Processing Time 0.029 seconds

An extended finite element method for modeling elastoplastic FGM plate-shell type structures

  • Jrad, Hanen;Mars, Jamel;Wali, Mondher;Dammak, Fakhreddine
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.299-312
    • /
    • 2018
  • In this paper, an extended finite element method is proposed to analyze both geometric and material non-linear behavior of general Functionally Graded Material (FGM) plate-shell type structures. A user defined subroutine (UMAT) is developed and implemented in Abaqus/Standard to study the elastoplastic behavior of the ceramic particle-reinforced metal-matrix FGM plates-shells. The standard quadrilateral 4-nodes shell element with three rotational and three translational degrees of freedom per node, S4, is extended in the present study, to deal with elasto-plastic analysis of geometrically non-linear FGM plate-shell structures. The elastoplastic material properties are assumed to vary smoothly through the thickness of the plate-shell type structures. The nonlinear approach is based on Mori-Tanaka model to underline micromechanics and locally determine the effective FGM properties and self-consistent method of Suquet for the homogenization of the stress-field. The elasto-plastic behavior of the ceramic/metal FGM is assumed to follow Ludwik hardening law. An incremental formulation of the elasto-plastic constitutive relation is developed to predict the tangent operator. In order to to highlight the effectiveness and the accuracy of the present finite element procedure, numerical examples of geometrically non-linear elastoplastic functionally graded plates and shells are presented. The effects of the geometrical parameters and the volume fraction index on nonlinear responses are performed.

Derivation of Single Phase Material Properties Equivalent to 1-3 Piezoelectric Composites by the Resonant Method (공진법을 이용한 1-3형 압전복합체의 단일상 등가물성 도출)

  • Kim, Jin-Wook;Pyo, Sung-Hun;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.368-376
    • /
    • 2011
  • Piezoelectric composites have been widely used in broadband acoustic transducers because of their lower acoustic impedance and higher electro-mechanical coupling factor. However, their complex structure has placed many limitations on the design of various transducers. This paper suggests the methodology to substitute the 1-3 piezocomposites by a single-phased material that has properties equivalent to those of the piezocomposites. The resonant method and finite element analysis (FEA) are used to derive the equivalent properties that can accurately depict resonant properties at various vibration modes of the piezocomposites. Validity of the suggested method is confirmed by comparing frequency characteristics of fabricated 1-3 piezocomposite specimens and FEA models. Further, accuracy of the derived material constants is checked by applying the equivalent properties to FEA models of the single phase material for various resonant modes.

A Study on Comparison of Phycocyanin Extraction Methods for Hyperspectral Remote Sensing of Cyanobacteria in Turbid Inland Waters (국내 담수역 남조류 원격탐사를 위한 피코시아닌 추출법 비교 연구)

  • Ha, Rim;Shin, Hyunjoo;Nam, Gibeom;Park, Sanghyun;Kang, Taegu;Song, Hyunoh;Lee, Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.520-527
    • /
    • 2016
  • Phycocyanin (PC) is one of the water-soluble accessory pigments of cyanobacteria species, and its concentration is used to estimate the presence and relative abundance of cyanobacteria. In laboratory experiments, PC content of field data were determined using Sarada's freeze-thaw method in algal bloom season. The effectiveness of three selected extraction methods (repeated freeze-thaw method, homogenization, power control) for PC were determined. The extraction efficiency of phycocyanin was the highest (of the methods compared) when a single freezing-thawing cycle was followed by pre-sonication. Applying this optimized method to surface water of Korean inland waters, the average concentration distribution was estimated at $2.9{\sim}51.9mg/m^3$. It has been shown that the optimized pre-sonication method is suitable to measure cyanobacteria PC content for the characterization of inland waters. The approach and results of this study indicates the potential of effective methods for remote monitoring and management of water quality in turbid inland waters using hyperspectral remote sensing.

Development of HPLC Method for Quality Assessment of Marker Components in Atractylodis Rhizoma Alba (백출(Atractylodis Rhizoma Alba)의 품질평가를 위한 지표성분 분석법 평가)

  • Lee, Jae-Woong;Kim, Joon-Hee;Kang, Byoung-Man;Ahn, Byung-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.34 no.1
    • /
    • pp.52-58
    • /
    • 2021
  • Homogenization of quality was important in order to use herbal medicines as pharmaceuticals. To solve this problem, it was important to establish quality standards. Atractylodis Rhizoma Alba has no quantitative method in the Korean Pharmacopoeia. Thus, we have researched to improve the quality evaluation method of Atractylodis Rhizoma Alba with an HPLC. Atractylenolide III and atracylodin were selected as potential marker compounds. This analytical procedure was subject to validation. According to validation guideline of South Korea's Ministry of Food and Drugs Safety, the specificity, linearity, precision, range, quantitative limits, detection limits and accuracy were measured. Because the specificity, linearity, precision, range, quantitative limits, detection limits and accuracy meet criteria of the guideline, the analytic method was validated. With this analysis, Atractylodis Rhizoma Alba and Atractylodis Rhizoma analyzed. As a result, both atractylenolide III and atracylodin appear to be suitable standard compounds. it confirmed that tractylodes Rhizome, similar to Atractylodes Rhizome Alba, could be distinguished.

Effect of Inhibitor on Lipoxygenase Inactivation in Soybean Homogenates (대두 현탁액의 Lipoxygenase의 활성저해 인자들의 영향)

  • Im, Hyo-Sig;Cho, Young-Hun;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 1995
  • The effect of several inhibitors such as ascorbic acid on the lipoxygenase in soybeans known to catalyze reaction resulting in racid off-flavors was examined in the soybean homogenates by the oxygen electrode method. Among 8 compounds added at homogenizing process, 10 mM ascorbic acid inhibited lipoxygenase-1 and lipoxygenase-2/3 activities to 41.7 and 49.8%, respectively. Inactivation of lipoxygenase-2/3 was highly accelerated by homogenization for 15 min at room temperature, so the activity was inhibited 70.8% comparing with the homogenization of 3 min. When soybean homogenates with 10 mM ascorbic acid was stored at $25^{\circ}C$ for 72 hrs, lipoxygenase-2/3 activities lowered to 52.8% whereas L-1 activities lowered to 15.8%. Since it is reported that lipoxygenase-2 is responsible for the off-flavor of soybean products, the inhibitory effect of ascorbic acid among several inhibitors investigated might be useful in soybean processing.

  • PDF

In vitro Anticancer Activity of Paclitaxel Incorporated in Low-melting Solid Lipid Nanoparticles

  • Lee, Mi-Kyung;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.201-205
    • /
    • 2009
  • Triglyceride solid lipid with medium chain fatty acid, tricaprin (TC), was used as a core matrix of lipid nanoparticles (LN) to solubilize water-insoluble paclitaxel and enhance the stability of nanoparticles by immobilization of incorporated drug in the solid core during storage at low temperature. In the present study, TC-LN containing paclitaxel was prepared by hot melt homogenization method using TC as a core lipid and phospholipids as stabilizers. The particle size of TC-LN containing paclitaxel was less than 200 nm and its zeta potential was around -40 mV. Calorimetric analysis showed TC core could be solidified by freezing and thawing in the manufacturing process in which the hot dispersion should be prepared at elevated temperature and subsequently cooled to obtain solid lipid nanoparticles. The melting transition of TC core was observed at $27.5^{\circ}C$, which was lower than melting point of TC bulk. The particle size of TC-LN remained unchanged when kept at $4^{\circ}C$. Paclitaxel containing TC-LN showed comparable anticancer activity to the Cremophore ELbased paclitaxel formulation against human ovarian (OVCAR-3) and breast (MCF-7) cancer cell lines. Thus, lipid nanoparticles with medium chain solid lipid may have a potential as alternative delivery system for parenteral administration of paclitaxel.

Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE

  • Kumar, Dinesh;Srivastava, Ashish
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1085-1103
    • /
    • 2016
  • The present paper is aimed to evaluate and compare the effective elastic properties of CNT- and graphene-based nanocomposites using 3-D nanoscale representative volume element (RVE) based on continuum mechanics using finite element method (FEM). Different periodic displacement boundary conditions are applied to the FEM model of the RVE to evaluate various elastic constants. The effects of the matrix material, the volume fraction and the length of reinforcements on the elastic properties are also studied. Results predicted are validated with the analytical and/or semiempirical results and the available results in the literature. Although all elastic stiffness properties of CNT- and graphene-based nanocomposites are found to be improved compared to the matrix material, but out-of-plane and in-plane stiffness properties are better improved in CNT- and graphene-based nanocomposites, respectively. It is also concluded that long nanofillers (graphene as well as CNT) are more effective in increasing the normal elastic moduli of the resulting nanocomposites as compared to the short length, but the values of shear moduli, except $G_{23}$ of CNT nanocomposite, of nanocomposites are slightly improved in the case of short length nanofillers (i.e., CNT and graphene).

Computational multiscale analysis in civil engineering

  • Mang, H.A.;Aigner, E.;Eberhardsteiner, J.;Hackspiel, C.;Hellmich, C.;Hofstetter, K.;Lackner, R.;Pichler, B.;Scheiner, S.;Sturzenbecher, R.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.109-128
    • /
    • 2009
  • Multiscale analysis is a stepwise procedure to obtain macro-scale material laws, directly amenable to structural analysis, based on information from finer scales. An essential ingredient of this mode of analysis is mathematical homogenization of heterogeneous materials at these scales. The purpose of this paper is to demonstrate the potential of multiscale analysis in civil engineering. The materials considered in this work are wood, shotcrete, and asphalt.

Redox Equilibrium of Antimony by Square Wave Voltammetry Method in CRT Display Glass Melts

  • Jung, Hyun-Su;Kim, Ki-Dong;Kim, Hyo-Kwang;Kim, Young-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.1-5
    • /
    • 2007
  • Fining and homogenization of melts during batch melting is closely related to the redox reaction of polyvalent element M (M: Sb, As etc), $M^{(x+n)+}+n/2O^{2-}{\rightarrow}M^{x+}+n/4O_2$. In this study, square wave voltammetry (SWV) measurements were performed to examine the redox behavior of an antimony ion in cathode ray tube (CRT) glass melts. According to results, well-separated two peaks are shown at low temperature while only one peak is shown at high temperature in voltammograms, which reveals that redox reaction of antimony consist of two steps: $Sb^{5+}/Sb^{3+}\;and\;Sb^{3+}/Sb^0$, depending on the temperature. Based on the peak potential shown in the voltammogram, the thermodynamic data and the redox ratio for two redox couple were determined.

Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations

  • Matous, Karel;Maniatty, Antoinette M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-396
    • /
    • 2009
  • In the present work, the elasto-viscoplastic behavior, interactions between grains, and the texture evolution in polycrystalline materials subjected to finite deformations are modeled using a multiscale analysis procedure within a finite element framework. Computational homogenization is used to relate the grain (meso) scale to the macroscale. Specifically, a polycrystal is modeled by a material representative volume element (RVE) consisting of an aggregate of grains, and a periodic distribution of such unit cells is considered to describe material behavior locally on the macroscale. The elastic behavior is defined by a hyperelastic potential, and the viscoplastic response is modeled by a simple power law complemented by a work hardening equation. The finite element framework is based on a Lagrangian formulation, where a kinematic split of the deformation gradient into volume preserving and volumetric parts together with a three-field form of the Hu-Washizu variational principle is adopted to create a stable finite element method. Examples involving simple deformations of an aluminum alloy are modeled to predict inhomogeneous fields on the grain scale, and the macroscopic effective stress-strain curve and texture evolution are compared to those obtained using both upper and lower bound models.