• Title/Summary/Keyword: Homogeneous Solution

Search Result 564, Processing Time 0.023 seconds

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process (초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동)

  • Song, Junwoo;Han, Junhee;Kim, Song-Yi;Seok, Jinwoo;Kim, Hyoseop
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback

  • Lixun Liu;Han Zhang;Yingjie Wu;Baokun Liu;Jiong Guo;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.310-323
    • /
    • 2023
  • The k-eigenvalue neutronics/thermal-hydraulics coupling calculation is a key issue for reactor design and analysis. Jacobian-free Newton-Krylov (JFNK) method, featured with super-linear convergence rate and high efficiency, has been attracting more and more attention to solve the multi-physics coupling problem. However, it may converge to the high-order eigenmode because of the multiple solutions nature of the k-eigenvalue form of multi-physics coupling issue. Based on our previous work, a modified JFNK with a line search method is proposed in this work, which can find the fundamental eigenmode together with thermal-hydraulics feedback in a wide range of initial values. In detail, the existing modified JFNK method is combined with the line search strategy, so that the intermediate iterative solution can avoid a sudden divergence and be adjusted into a convergence basin smoothly. Two simplified 2-D homogeneous reactor models, a PWR model, and an HTR model, are utilized to evaluate the performance of the newly proposed JFNK method. The results show that the performance of this proposed JFNK is more robust than the existing JFNK-based methods.

Interface between calcium silicate cement and adhesive systems according to adhesive families and cement maturation

  • Nelly Pradelle-Plasse;Caroline Mocquot;Katherine Semennikova;Pierre Colon;Brigitte Grosgogeat
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.3.1-3.14
    • /
    • 2021
  • Objectives: This study aimed to evaluate the interface between a calcium silicate cement (CSC), Biodentine and dental adhesives in terms of sealing ability. Materials and Methods: Microleakage test: 160 standardized class II cavities were prepared on 80 extracted human molars. The cavities were filled with Biodentine and then divided into 2 experimental groups according to the time of restoration: composite resin obturation 15 minutes after Biodentine handling (D0); restoration after 7 days (D7). Each group was then divided into 8 subgroups (n = 5) according to the adhesive system used: etch-and-rinse adhesive (Prime & Bond); self-etch adhesive 2 steps (Optibond XTR and Clearfil SE Bond); self-etch adhesive 1 step (Xeno III, G-aenial Bond, and Clearfil Tri-S Bond); and universal used as etch-and-rinse or self-etch (ScotchBond Universal ER or SE). After thermocycling, the teeth were immersed in a silver nitrate solution, stained, longitudinally sectioned, and the Biodentine/adhesive percolation was quantified. Scanning electron microscopic observations: Biodentine/adhesive interfaces were observed. Results: A tendency towards less microleakage was observed when Biodentine was etched (2.47%) and when restorations were done without delay (D0: 4.31%, D7: 6.78%), but this was not significant. The adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate monomer showed the most stable results at both times studied. All Biodentine/adhesive interfaces were homogeneous and regular. Conclusions: The good sealing of the CSC/adhesive interface is not a function of the system adhesive family used or the cement maturation before restoration. Biodentine can be used as a dentine substitute.

The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams

  • Avcar, Mehmet;Hadji, Lazreg;Akan, Recep
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.99-112
    • /
    • 2022
  • The present study examines the natural frequencies (NFs) of perfect/imperfect functionally graded sandwich beams (P/IP-FGSBs), which are composed of a porous core constructed of functionally graded materials (FGMs) and a homogenous isotropic metal and ceramic face sheets resting on elastic foundations. To accomplish this, the material properties of the FGSBs are assumed to vary continuously along the thickness direction as a function of the volume fraction of constituents expressed by the modified rule of the mixture, which includes porosity volume fraction represented using four distinct types of porosity distribution models. Additionally, to characterize the reaction of the two-parameter elastic foundation to the Perfect/Imperfect (P/IP) FGSBs, the medium is assumed to be linear, homogeneous, and isotropic, and it is described using the Winkler-Pasternak model. Furthermore, the kinematic relationship of the P/IP-FGSBs resting on the Winkler-Pasternak elastic foundations (WPEFs) is described using trigonometric shear deformation theory (TrSDT), and the equations of motion are constructed using Hamilton's principle. A closed-form solution is developed for the free vibration analysis of P/IP-FGSBs resting on the WPEFs under four distinct boundary conditions (BCs). To validate the new formulation, extensive comparisons with existing data are made. A detailed investigation is carried out for the effects of the foundation coefficients, mode numbers (MNs), porosity volume fraction, power-law index, span to depth ratio, porosity distribution patterns (PDPs), skin core skin thickness ratios (SCSTR), and BCs on the values of the NFs of the P/IP-FGSBs.

Anisotropic TiSrYZrO Thin Films Induced by One-step Brush Coating for Liquid Crystal Molecular Orientation (액정분자 배향용 원스텝 브러시 코팅으로 유도된 이방성 TiSrYZrO 박막)

  • Byeong-Yun Oh
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.146-154
    • /
    • 2024
  • In this paper, we present a convenient liquid crystal (LC) molecular alignment method using brush hairs as an alternative to the rubbing process in the LC display industry. Titanium strontium yttrium zirconium oxide (TiSrYZrO) solution was prepared using a sol-gel process, and the TiSrYZrO alignment film production and LC molecular alignment were integrated through a one-step brush coating process. As the curing temperature increased, the LC molecule alignment of the LC cell improved, and the formation of a physical surface anisotropic structure due to the shear stress caused by the movement of the brush hairs on the coating surface led to uniform alignment of the LC molecules. Uniform and homogeneous LC molecular alignment was confirmed through polarizing optical microscopy and pretilt angle measurement. Through thermal oxidation using X-ray photoelectron spectroscopy, the TiSrYZrO thin film well formed of metal oxide was confirmed and verified to have excellent optical transparency. From these results, it is expected that a convenient LC molecular alignment method using brush hairs as an alternative to the rubbing process will be a viable next-generation technology.

PWR core calculation based on pin-cell homogenization in three-dimensional pin-by-pin geometry

  • Bin Zhang;Yunzhao Li;Hongchun Wu;Wenbo Zhao;Chao Fang;Zhaohu Gong;Qing Li;Xiaoming Chai;Junchong Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.1950-1958
    • /
    • 2024
  • For the pressurized water reactor two-step calculation, the traditional assembly homogenization and two-group neutron diffusion calculation have been widely used. When it comes to the core pin-by-pin simulation, many models and techniques are different and unsettled. In this paper, the homogenization methods based on the pin discontinuity factors and super homogenization factors are used to get the pin-cell homogenized parameters. The heterogeneous leakage model is applied to modify the infinite flux spectrum of the single assembly with reflective boundary condition and to determine the diffusion coefficients for the SP3 solver which is used in the core simulation. To reduce the environment effect of the single-assembly reflective boundary condition, the online method for the SPH factors updating is applied in this paper, and the functionalization of SPH factors based on the least-squares method will be pre-made alone with the table of the group constants. The fitting function will be used to update the thermal-group SPH factors with a whole-core pin-by-pin homogeneous solution online. The three-dimensional Watts Bar Nuclear Unit 1 (WBN1) problem was utilized to test the performance of pin-by-pin calculation. And numerical results have demonstrated that PWR pin-by-pin core calculation has more accurate results compared with the traditional assembly-homogenization scheme.

Characteristics of c-axis oriented sol-gel derived ZnO films (C-축으로 정렬된 sol-gel ZnO 박막의 특성)

  • 김상수;장기완;김인성;송호준;박일우;이건환;권식철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.49-55
    • /
    • 2001
  • ZnO films were fabricated on p-type Si(100) wafer ITO glass and quartz glass by the sol-gel process using zinc acetate dihydrate as starting material. A homogeneous and stable solution was prepared by dissolving the zinc acetate dihydrate in a solution of 2-methoxyethanol and monoethanolamine (MEA). ZnO films were deposited by spin-coating at 2800 rpm for 25 s and were dried on a hot plate at $250^{\circ}C$ for 10 min. Crystallization of the films was carried out at $400^{\circ}C$~$800^{\circ}C$ for 1 h in air. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), UV-vis transmittance spectroscopy, FTIR transmittance spectroscopy and Photoluminescence (PL) spectroscopy measurements have been used to study the structural and optical properties of the films. ZnO films highly oriented along the (002)plane were obtained. In all cases the films were found to be transparent (above 70%) in visible range with a sharp absorption edge at wavelengths of about 380nm, which is very close to the intrinsic band-gap of ZnO(3.2 eV). The low temperature band-edge photoluminescence revealed a complicated multi-line structure in terms of bound exciton complexes and the phonon replicas.

  • PDF

SURFACE CHARACTERISTICS AND BIOLOGICAL RESPONSES OF HYDROXYAPATITE COATING ON TITANIUM BY HYDROTHERMAL METHOD: AN IN VITRO STUDY

  • Kim, Dong-Seok;Kim, Chang-Whe;Jang, Kyung-Soo;Lim, Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.363-378
    • /
    • 2005
  • Statement of problem. Hydroxyapatite(HA) coated titanium surfaces have not yet showed the reliable osseointegration in various conditions. Purpose. This study was aimed to investigate microstructures, chemical composition, and surface roughness of the surface coated by the hydrothermal method and to evaluate the effect of hydrothermal coating on the cell attachment, as well as cell proliferation. Material and Methods. Commercially pure(c.p.) titanium discs were used as substrates. The HA coating on c.p. titanium discs by hydrothermal method was performed in 0.12M HCl solution mixed with HA(group I) and 0.1M NaOH solution mixed with HA(group II). GroupⅠ was heated at 180 $^{\circ}C$ for 24, 48, and 72 hours. GroupⅡ was heated at 180 $^{\circ}C$ for 12, 24, and 36 hours. And the treated surfaces were evaluated by Scanning electron microscopy(SEM), Energy dispersive X-ray spectroscopy(EDS), X-ray photoelectron spectroscopy(XPS), X-ray diffraction method(XRD), Confocal laser scanning microscopy(CLSM). And SEM of fibroblast and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay were used for cellular responses of the treated surfaces. Results. The color of surface changed in both groups after the hydrothermal process. SEM images showed that coating pattern was homogeneous in group II, while inhomogeneous in group I. H72 had rosette-like precipitates. The crystalline structure grew gradually in group II, according to extending treatment period. The long needle-like crystals were prominent in N36. Calcium(Ca) and phosphorus(P) were not detected in H24 and H48 in EDS. In all specimens of group II and H72, Ca was found. Ca and P were identified in all treated groups through the analysis of XPS, but they were amorphous. Surface roughness did not increase in both groups after hydrothermal treatment. The values of surface roughness were not significantly different between groups I and II. According to the SEM images of fibroblasts, cell attachments were oriented and spread well in both treated groups, while they were not in the control group. However, no substantial amount of difference was found between groups I and II. Conclusions. In this study during the hydrothermal process procedure, coating characteristics, including the HA precipitates, crystal growth, and crystalline phases, were more satisfactory in NaOH treated group than in HCl treated group. Still, the biological responses of the modified surface by this method were not fully understood for the two tested groups did not differ significantly. Therefore, more continuous research on the relationship between the surface features and cellular responses seems to be in need.