• Title/Summary/Keyword: Homogeneous Solution

Search Result 561, Processing Time 0.03 seconds

Controlling the Growth of Few-layer Graphene Dependent on Composition Ratio of Cu/Ni Homogeneous Solid Solution

  • Lim, Yeongjin;Choi, Hyonkwang;Gong, Jaeseok;Park, Yunjae;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.1-273.1
    • /
    • 2014
  • Graphene, a two dimensional plane structure of $sp^2$ bonding, has been promised for a new material in many scientific fields such as physics, chemistry, and so on due to the unique properties. Chemical vapor deposition (CVD) method using transitional metals as a catalyst can synthesize large scale graphene with high quality and transfer on other substrates. However, it is difficult to control the number of graphene layers. Therefore, it is important to manipulate the number of graphene layers. In this work, homogeneous solid solution of Cu and Ni was used to control the number of graphene layers. Each films with different thickness ratio of Cu and Ni were deposited on $SiO_2/Si$ substrate. After annealing, it was confirmed that the thickness ratio accords with the composition ratio by X-ray diffraction (XRD). The synthesized graphene from CVD was analyzed via raman spectroscopy, UV-vis spectroscopy, and 4-point probe to evaluate the properties. Therefore, the number of graphene layers at the same growth condition was controlled, and the correlation between mole fraction of Ni and the number of graphene layers was investigated.

  • PDF

Synthesis of Hydroxyapatite Powders by Homogeneous Precipitation Method and Their Thermal Changes (균일침전법을 이용항 Hydroxyapatite 분말의 제조 및 가열변화)

  • Lee, Jin-Ho;Park, Hoon;Kim, Chang-Eun
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.7-16
    • /
    • 1996
  • ${CO_3}^{2-}$ containing whisker-like hydroxyapatite powders were synthesized byhomogeneous precipitation method using urea, Dicalcium phosphate anhdrate[DCPA; $CaHPO_4$] and octacalcium phosphate [OCP; $Ca_8H_2(PO_4_)6\cdot5H_20$]were obtained as precursors and they transformed to high crystalline hydroxyapatites at pH 5.62, and 6.54 respectively. According to the condition of the final pH in the solutions for the solution products and urea contents OCP was remained. When the solution product of $Ca^{2-}$ and ${PO_4}^{3-}$ was $1.5\times 10^4$[$mM^2$] and the content of urea was 0.25 mol.$dm^{-3}$ well crystallized whisker-like hydroxyapatite tens of micrometer in length was obtained. By heat treatment DCPA and OCP were decomposed into $\beta$-tricalcium phosphate [$\beta$-TCP ; $\beta$-$Ca_3{PO_4}_2$] and $\beta$-dicalcium phosphate [$\beta$-DCP ;$\beta$-$Ca_2P_2O_4}_2$]. And well-crystallized hydroxyapatite was partially decomposed into $\beta$-TCP at $800^{\circ}C$.

  • PDF

The Study on the Recovery of Volatile Organic Components by Pervaporation (Pervaporation을 이용한 휘발성 유기성분 회수에 관한 연구)

  • 김희진;송영석;민병렬
    • Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.51-62
    • /
    • 1999
  • The recovery of trace volatile organic components from water by pervaporation was investigated. Permeation experiments through homogeneous polydimethylsiloxane(PDMS) membrane was carried out and the effect of feed concentrations and membrane thicknesses on the permeation characteristics were investigated. A solution-diffusion model is used to describe the pervaporation transport mechanism. In homogeneous PDMS membrane it appeared that the selectivities of MEK and toluene are constant, and that organic flux has a linear relationship with feed concentration. These results indicate that the coupling effects between organics were negligible. The selectivity of PDMS membranes is invariant with respect to the membrane thickness. The intrinsic membrane permeability of organic components determined by using a solution-diffusion model. Comparing with various composite type membrane, the membrane using PEG treated nonwoven fabric as sublayer showed the best performance in VOC recovery by pervaporation.

  • PDF

The computation of the torso surface potentials using the boundary element method (경계요소법을 이용한 트로소 표면전위의 계산)

  • 이경중;이세진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.22-29
    • /
    • 1996
  • This study describes a method to find the torso surface potential based on the boundary element method. In order to find the torso surface potential, the governing equation was developed based on the green's second theorem. The boundary element method (BEM) which has a good computing capability in case of homogeneous and isotropic medium was applied to solve the equation. to validate the BEM, we considered a homogeneous sphere model which has an electrric dopole source inside. The results showed the good agreement between the analytic solution and the computed solution. In normal heart, the simulated torso surface isopotential maps are good agreement with that obtained form the ventricular excitation.

  • PDF

Sol-Gel Transition in Di-(2-ethylhexyl) phthalate-Plasticized Poly(vinyl chloride)

  • Lee, Chang-Hyung;Nah, Jae-Woon;Cho, Kil-Won;Kim, Seong-Hun;Hahn, Ai-Ran
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1485-1489
    • /
    • 2003
  • The gelation for di-(2-ethylhexyl) phthalate (DEHP)-plasticized poly(vinyl chloride) was studied by measuring time-resolved small-angle X-ray scattering (SAXS) and a flow of the solutions in test tube. It was found that for the gelation there were three regimes. At Regime I, the solution rapidly changed to a gel, and the SAXS intensity showed a peak and the peak intensity increased, keeping the peak angle constant. Applying the SAXS intensity to the kinetic analysis of the liquid-liquid phase separation, it was revealed that the spinodal decomposition proceeded to develop a periodic length of 29.9 nanometer in size, a hydrogen-bonding-type association in polymer rich phase followed, and then it induced fast gelation rate. At Regime II, the gelation slowly occurred and the SAXS intensity was not observed, suggesting that a homogeneous gel network was formed by a hydrogen-bonding. At regime III, the solution was a homogeneous sol.

An Investigation of Dynamic Characteristics of Structures in Optimization (동하중을 고려한 설계의 필요성에 관한 고찰)

  • Kang, B.S.;Kim, J.S.;Park, G.J
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1011-1016
    • /
    • 2004
  • All the loads in the real world are dynamic loads and it is well known that structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to the static loads using dynamic factors. However, due to the difference of load characters, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency is low, the inertia effect should not be ignored. Then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also the optimization results considering dynamic loads are compared with static loads.

  • PDF

The Distribution of the Torso Surface Potentials based on electrical cardiac dipole source (심장의 전기쌍극자 소스에 의한 토르소 표면 전위의 분포)

  • Lee, K.J.;Lee, S.J.;Park, K.L.;Song, G.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.188-191
    • /
    • 1996
  • This study is to find the distribution of the torso surface potential based on electrical cardiac dipole source. In order to find the torso surface potential, the governing equation was developed based on the Green's second theorem. The boundary element method(BEM) which has a good computing capability in case of homogeneous and isotropic medium was applied to solve the equation. To validate the BEM, we considered a homogeneous sphere model which has an electric dipole source inside. The results showed the good agreement between the analytic solution and the computed solution. In normal heart, the simulated torso surface isopotential maps are good agreement with that obtained from the ventricular excitation. The validity of the simulated results were verified by comparing with other results.

  • PDF

Bending and buckling of porous multidirectional functionality graded sandwich plate

  • Lazreg, Hadji;Fabrice, Bernard;Royal, Madan;Ali, Alnujaie;Mofareh Hassan, Ghazwani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • Bending and buckling analysis of multi-directional porous functionally graded sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. The principle of virtual displacements was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The validation of the present study has been performed with those available in the literature. The composition of metal-ceramic-based FGM changes in longitudinal and transverse directions according to the power law. Different porosity laws, such as uniform distribution, unevenly and logarithmically uneven distributions were used to mimic the imperfections in the functionally graded material that were introduced during the fabrication process. Several sandwich plates schemes were studied based on the plate's symmetry and the thickness of each layer. The effects of grading parameters and porosity laws on the bending and buckling of sandwich plates were examined.

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami;Amar Kahil;Lazreg Hadji;Royal Madan;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.263-277
    • /
    • 2023
  • Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.

REMARKS ON FINITE ELEMENT METHODS FOR CORNER SINGULARITIES USING SIF

  • Kim, Seokchan;Kong, Soo Ryun
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.661-674
    • /
    • 2016
  • In [15] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution we could get accurate solution just by adding the singular part. This approach works for the case when we have the accurate stress intensity factor. In this paper we consider Poisson equations with mixed boundary conditions and show the method depends the accrucy of the stress intensity factor by considering two algorithms.