• 제목/요약/키워드: Homogeneous Charge Compression Ignition

검색결과 107건 처리시간 0.029초

Analysis of Compression-induced Auto-ignition Combustion Characteristics of HCCI and ATAC Using the Same Engine

  • Iijima, Akira;Shoji, Hideo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1449-1458
    • /
    • 2006
  • Controlled Auto-ignition (CAI) combustion processes can be broadly divided between a CAI process that is applied to four-cycle engines and a CAI process that is applied to two-cycle engines. The former process is generally referred to as Homogeneous Charge Compression Ignition (HCCI) combustion and the later process as Active Thermo-Atmosphere Combustion (ATAC) The region of stable engine operation differs greatly between these two processes, and it is thought that the elucidation of their differences and similarities could provide useful information for expanding the operation region of HCCI combustion. In this research, the same two-cycle engine was operated under both the ATAC and HCCI combustion processes to compare their respective combustion characteristics. The results indicated that the ignition timing was less likely to change in the ATAC process in relation to changes in the fuel octane number than it was in the HCCI combustion process.

압축착화 디젤엔진의 연소위상 검출방법에 관한 연구 (Study on Detection of Combustion Phase in Compression Ignition Diesel Engine)

  • 김승관;박효원;최성철;조성인;박수한
    • 융복합기술연구소 논문집
    • /
    • 제9권1호
    • /
    • pp.13-19
    • /
    • 2019
  • The purpose of this study is to suggest a new method to determine a combustion phase (start of combustion and end of combustion) using a combustion pressure data. Unlike previous research method that used heat release amount, the difference between the combustion pressure measured in the combustion chamber and the motoring pressure was used to determine the combustion phase. This research was conducted using a single-cylinder diesel engine with a compression ratio of 17.7. The test was conducted under various injection timing. The newly proposed method showed high accuracy in combustion mode with early injection, as well as the conventional combustion mode. It is expected that this method will be used to study new combustion strategies such as HCCI (homogeneous charge compression ignition) and RCCI (reactivity controlled compression ignition) that are applying early injection strategies as well as existing combustion modes.

분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향 (The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion)

  • 국상훈;공장식;박세익;배충식;김장헌
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

급속압축장치를 이용한 HCCI기관에서 층상혼합기에 의한 압력상승률의 저감효과에 대한 연구 (An Investigation of a Stratified Charge Mixture's HCCI Combustion Processes Using a Rapid Compression Machine)

  • 임옥택
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.1-8
    • /
    • 2010
  • The introduction of mixture heterogeneity has been considered to be one of the ways to avoid knocking, as it reduces the pressure rise rate in HCCI Combustion. The purpose of this research was to investigate the effects of heterogeneity, in particular thermal stratification and fuel strength stratification, on HCCI Combustion fueled with DME and n-Butane. Thermal stratification is formed in the Combustion Chamber of a Rapid Compression Machine with three kinds of pre-mixture, each with different properties. The stratified charge mixture was adiabatically compressed, throughout which cylinder gas pressure and two-dimensional chemiluminescence images were measured and analyzed.

예혼합 압축착화 수소기관의 역화현상에 관한 실험적 연구 (An Experimental Study on Phenomenon of Backfire in H2 HCCI Engine)

  • 이종민;이종구;이광주;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제26권1호
    • /
    • pp.28-34
    • /
    • 2015
  • HCCI (Homogeneous Charged Compression Ignition) hydrogen engine has relatively narrower operation range caused by backfire occurrence due to the rapid pressure rising by using higher compression ratio and significant reaction velocity. In this study, to grasp of backfire process and characteristic in the HCCI research hydrogen engine, in-cylinder pressure, intake pressure and backfire limit range are analyzed with compression ratio and intake valve open timing, experimentally. As the result, it is observed that knock is occurred just before backfire occurrence in HCCI hydrogen engine but not spark igntion type, this phenomenon is always the same for the above variables. Also backfire limit range are expanded up to 50% for the more retarding intake valve open timing in this operating conditions.

예혼합 압축착화 디젤엔진의 부하변동에 따른 연소특성 분석 (Analysis of Combustion Characteristics for a Homogeneous Charge Compression Ignition Engine with Load Condition)

  • 장시웅;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.17-23
    • /
    • 2002
  • In order to reduce exhaust emissions from diesel engine under wide operating range, an experimental study based on a new concept of combustion called HCDC(Homogeneous Charge Diesel Combustion) was conducted. In this concept, most of the fuel is supplied as premixed homogeneous charge and the rest is directly injected into a cylinder to ignite. In this study we compared combustion characteristics of an HCDC engine with those of conventional diesel engines. At high premixed fuel ratio and high load range, it was observed that premixed combustion heat release rate was low and diffusion combustion duration was shorten. from this experiment, it was found that NOx is reduced by the lower maximum temperature and soot is reduced by rapid combustion during diffusion combustion phase.

6공 연료분사기를 장착한 DISI 엔진 내 균질급기의 연료증기 분포 특성 (The Study on the Fuel Vapor Distribution of Homogeneous Charge in a DISI Engine with a 6-Hole Fuel Injector)

  • 김성수
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.5-10
    • /
    • 2011
  • The spatial fuel vapor distribution of the homogeneous charge by a 6-hole injector was examined in a optically accessed single cylinder direct injection spark ignition(DISI) engine. The effects of in-cylinder charge motion, and fuel injection pressure, and coolant temperature were investigated using a planar LIF (Laser Induced Fluorescence) technique. It was confirmed that the in-cylinder tumble flow played a little more effective role in the spatial fuel vapor distribution than the swirl flow during the compression stroke at 10 mm and 2 mm planes under cylinder head gasket and the increased fuel injection pressure activated spatial distributions of the fuel vapor. In additions, richer mixtures were concentrated around the cylinder wall by the increase of the coolant temperature.

2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구 (A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel)

  • 명광재;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.

CO2/NOx 초저배출형 HCCI 엔진 연소기술과 신촉매제어기술 (HCCI Combustion Engines with Ultra Low CO2 and NOx Emissions and New Catalytic Emission Control Technology)

  • 김문현
    • 한국환경과학회지
    • /
    • 제17권12호
    • /
    • pp.1413-1419
    • /
    • 2008
  • The Kyoto Protocol, that had been in force from February 16, 2005, requires significant reduction in $CO_2$ emissions for all anthropogenic sources containing transportation, industrial, commercial, and residential fields, etc, and automotive emission standards for air pollutants such as particulate matter (PM) and nitrogen oxides $(NO_x)$ become more and more tight for improving ambient air quality. This paper has briefly reviewed homogeneous charge compression ignition (HCCI) combustion technology offering dramatic reduction in $CO_2,\;NO_x$ and PM emissions, compared to conventional gasoline and diesel engine vehicles, in an effort of automotive industries and their related academic activities to comply with future fuel economy legislation, e.g., $CO_2$ emission standards and corporate average fuel economy (CAFE) in the respective European Union (EU) and United States of America (USA), and to meet very stringent future automotive emission standards, e.g., Tier 2 program in USA and EURO V in EU. In addition, major challenges to the widespread use of HCCI engines in road applications are discussed in aspects of new catalytic emissions controls to remove high CO and unburned hydrocarbons from such engine-equipped vehicles.

흡기밸브 닫힘 시기와 분사조건이 PCCI 엔진의 성능에 미치는 영향에 관한 연구 (A Study on Effect of the Intake Valve Timing and Injection Conditions on the PCCI Engine Performance)

  • 이재현;김형민;김영진;이기형
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2010
  • As world attention has focused on global warming and air pollution, high efficiency diesel engines with low $CO_2$ emissions have become more attractive. Premixed diesel engines in particular have the potential to achieve the more homogeneous mixture in the cylinder which results in lower NOx and soot emission. Early studies have shown that the operation conditions such as the EGR, intake conditions, injection conditions and compression ratio are important to reduce emissions in a PCCI (Premixed Charge Compression Ignition) engine. In this study a modified cam was employed to reduce the effective compression ratio. While opening timing of the intake valve was fixed, closing timing of the intake valve was retarded $30^{\circ}$. Although Atkinson cycle with the retarded cam leads to a low in-cylinder pressure in the compression stroke, the engine work can still be increased by advanced injection timing. On that account, we investigated the effects of various injection parameters to reduce emission and fuel consumption; as a result, lower NOx emission levels and almost same levels of fuel consumption and PM compared with those of conventional diesel engine cam timing could be achieved with the LIVC system.