• Title/Summary/Keyword: Homoepitaxial layer

Search Result 7, Processing Time 0.019 seconds

The Study of Si homoepitaxial growth on Si(111) Surface (Si(111)표면 위에서 Si의 동종층상성장에 관한 연구)

  • Kwak, Ho-Weon;moon, Byung-yeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.349-354
    • /
    • 2004
  • The growth mode of the Si layers which were grown on Si(111) by using Ag as surfactant were investigated by intensity oscillations of the RHEED specular spot at the different temperatures. we found that the introduction of Ag as the surfactant alters the growth mode from a three-dimensional clustering mechanism to a two-dimensional layer-by-layer growth. In the growth of Si layers on Si(111) with a surfactant Ag, At $450^{\circ}C$, RHEED intensity oscillation was very stable and periodic from early stage of deposition to 32 ML. RHEED patterns during homoepitaxial growth at $450^{\circ}C$ was changed from $7{\times}7$ structure into ${\sqrt{3}}{\times}{\sqrt{3}}$ structures. Since the ${\sqrt{3}}{\times}{\sqrt{3}}$ structure include no stacking fault, the stacking fault layer seems to be reconstructed into normal stacking one at transition from the $7{\times}7$ structure to a ${\sqrt{3}}{\times}{\sqrt{3}}$ one. We also found that the number of the intensity oscillation of the specular spot for Si growth with a surfactant Ag was more than for Si growth without a surfactant. This result may be explained that the activation energy decrease for the surface diffusion of Si atoms due to segregation of the surfactant toward the growing surface.

  • PDF

Homoopitaxial Growth on Ni(110) Surface

  • Kahng, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.138-138
    • /
    • 2000
  • Kinetic behaviors of homoepitaxial growth on Ni(110) surface was studied at the growth-temperature ranges 290~380 K with scanning tunneling microscopy. At low temperature (~290 K), deposited Ni grows layer-by-layer mode in the first several layers with one-dimensional islands but eventually (at > monolayers) forms three-dimensional islands througy the kinetic shortening of the average length of one-dimensional islands. At the intermediat temperature (~340 K), the three-dimensional islands were observed to be I) regular mesa-like structure with high aspect ratio (~1:10) at ~15 monolayer, ii) hut-like structure with low aspect ratio (~1:1.5) at ~35 monolayer, and iii) rounded mound structure at ~55 monolayers, due to the competition of kinetic and energetic terms. At the high temperature (~ 380 K), the flat surface with layer-by-layer mode was observed up to 50 monolayers. Microscopic orgins for the observations will be discussed on the basis of kinetic Monte Carlo simulations.

  • PDF

Effects of Nucleation Layer's Surface Roughness on the Quality of InP Epitaxial Layer Grown on GaAs Substrates (Nucleation Layer의 표면 거칠기가 GaAs 기판 위에 성장된 InP 에피층의 품질에 미치는 영향)

  • Yoo, Choong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.575-579
    • /
    • 2012
  • Heteroepitaxial InP films have been grown on GaAs substrates to study the effects of the nucleation layer's surface roughness on the epitaxial layer's quality. For this, InP nucleation layers were grown at $400^{\circ}C$ with various ethyldimethylindium (EDMIn) flow rates and durations of growth, annealed at $6200^{\circ}C$ for 10 minutes and then InP epitaxial layers were grown at $550^{\circ}C$. It has been found that the nucleation layer's surface roughness is a critical factor on the epitaxial layer's quality. When a nucleation layer is grown with an EDMIn flow rate of 2.3 ${\mu}mole/min$ for 12 minutes, the surface roughness of the nucleation layer is minimum and the successively grown epitaxial layer's qualities are comparable to those of the homoepitaxial InP layers reported. The minimum full width at half maximum of InP (200) x-ray diffraction peak and that of near-band-edge peak from a 4.4 K photoluminescence are 60 arcmin and 6.33 meV, respectively.

Molecular Beam Epitaxial Growth of GaAs on Silicon Substrate (실리콘 기판위에 분자선속법으로 생장한 GaAs 에피층)

  • 이동선;우덕하;김대욱;우종천
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 1991
  • Molecular beam epitaxial growth of GaAs on Si substrate and the results on its analysis are reported. Epitaxy was performed on two different types of the substrate under various grwth conditions, and was analyzed by scanning and transmission electron microscopes, X-ray diffractometer, photoluminescence and Hall measurements. GaAs epitaxial layer has better crystalline quality when it was grown on a tilt-cut substrate. The stress seems to be releaxed more easily when multi-quantum well was introduced in the buffer layer. The epilayer was doped unintentionally with Si during growth due to the diffusion of the substrate. Also observed is that the quantum efficiency of excitonic radiative recombination of the heteroepitaxy is not as good as that of the homoepitaxy in the same doping level.

  • PDF

Selective regrowth of InP current blocking layer by chloride vapor phase epitaxy on mesa structures (Chloride VPE 법에 의한 메사 구조위에 InP 전류 차단막의 선택적 재성장)

  • 장영근;김현수;최훈상;오대곤;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.207-212
    • /
    • 1999
  • Undoped InP epilayers with high purity were grown by using $In/PCl_3/H_2$ chloride vapor phase epitaxy. It was found that the growth of InP homoepitaxial layer is optimized at the growth temperature of $630^{\circ}C$ and at the $PCl_3$ molar fraction of $1.2\times10^{-2}$. The carrier concentration of InP epilayer was less than $10^{14} {cm}^{-3}$ from the low temperature (11K) photoluminescence measurement. Growth behavior of undoped InP current blocking layer on reactive ion-etched (RIE) mesas has been investigated for the realization of 1.55 $\mu \textrm m$buried-heterostructure laser diode (BH LD), using chloride vapor phase epitaxy. On the base of InP homoepitaxy, InP current blocking layers were grown at the growth temperatures ranging from $620^{\circ}C$ to $640^{\circ}C$. Almost planar grown surfaces without edge overgrowth were achieved as the growth temperature increased. It implied that higher temperature enhanced the surface diffusion of the growth species on the {111} B planes and suppressed edge overgrowth.

  • PDF

Characterization of epitaxial layers on beta-gallium oxide single crystals grown by EFG method as a function of different crystal faces and off-angle (EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면, off-angle에 따른 epitaxial layer의 특성 분석)

  • Min-Ji Chae;Sun-Yeong Seo;Hui-Yeon Jang;So-Min Shin;Dae-Uk Kim;Yun-Jin Kim;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Hae-Yong Lee;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • β-Ga2O3 is a representative ultra-wide bandgap (UWBG) semiconductor that has attracted much attention for power device applications due to its wide-bandgap of 4.9 eV and high-breakdown voltage of 8 MV/cm. In addition, because solution growth is possible, it has advantages such as fast growth rate and lower production cost compared to SiC and GaN [1-2]. In this study, we have successfully grown Si-doped 10 mm thick Si-doped β-Ga2O3 single crystals by the EFG (Edge-defined Film-fed Growth) method. The growth direction and growth principal plane were set to [010] / (010), respectively, and the growth speed was 7~20 mm/h. The as-grown β-Ga2O3 single crystal was cut into various crystal planes (001, 100, ${\bar{2}}01$) and off-angles (1o, 3o, 4o), and then surface processed. After processed, the homoepitaxial layer was grown on the epi-ready substrate using the HVPE (Halide vapor phase epitaxy) method. The processed samples and the epi-layer grown samples were analyzed by XRD, AFM, OM, and Etching to compare the surface properties according to the crystal plane and off-angle.

Influence of Surfactants(Ag, Sn) in Si/Si(111) Homoepitaxial Growth (Si(111) Homoepitaxial성장에서 중간금속이 미치는 영향)

  • Gwak, Ho-Won;Lee, Ui-Wan;Park, Dong-Su;Gwak, Lee-Sang;Lee, Chung-Hwa;Kim, Hak-Bong;Lee, Un-Hwan
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.230-236
    • /
    • 1993
  • We have the homoepitaxiallayers on the surfaces of Si(111) with and without the adsorbed surfactants, for example, Ag or Sn. In this paper, We have studied the difference of growth for these two cases by the observation of intensity oscillations of RHEED specular spots during the growing processes. In the case of growth without the adsorbed surfactants, the Si atoms fill first the stacking fault layer of Si(111) 7 ${\times}$7 structure. Therefore, the irregular oscillations are observed in the early stage of growing process. However, in the case of growth with the adsorbed surfactants, the surfactants already have the ${\sqrt}{3}$ ${\times}$ ${\sqrt}{3}$ structures on the surfaces of Si(111) at the adjucate temperatures of 300`$600^{\circ}C$ and 190~$860^{\circ}C$ for the surfactants of Ag and Sn, respectively. We also find that the number of oscillations is a little larger for the case of growth with the adsorbed surfactants. The reason for this is that for the case of growth with the adsorbed surfactants, the activation energies of Si atoms decrease due to the segregation of surfactants toward the growing surfaces.

  • PDF