• Title/Summary/Keyword: Hollow circular

Search Result 148, Processing Time 0.022 seconds

Cross-section classification of elliptical hollow sections

  • Gardner, L.;Chan, T.M.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.185-200
    • /
    • 2007
  • Tubular construction is widely used in a range of civil and structural engineering applications. To date, the principal product range has comprised square, rectangular and circular hollow sections. However, hot-rolled structural steel elliptical hollow sections have been recently introduced and offer further choice to engineers and architects. Currently though, a lack of fundamental structural performance data and verified structural design guidance is inhibiting uptake. Of fundamental importance to structural metallic design is the concept of cross-section classification. This paper proposes slenderness parameters and a system of cross-section classification limits for elliptical hollow sections, developed on the basis of laboratory tests and numerical simulations. Four classes of cross-sections, namely Class 1 to 4 have been defined with limiting slenderness values. For the special case of elliptical hollow sections with an aspect ratio of unity, consistency with the slenderness limits for circular hollow sections in Eurocode 3 has been achieved. The proposed system of cross-section classification underpins the development of further design guidance for elliptical hollow sections.

Study on the Ultimate Strength of Gusset Plate-Circular Hollow Section(CHS) Joint Stiffened with Rib-plate by End Restraint (단부 구속을 받는 리브 보강 플레이트 원형강관 X형 접합부의 극한내력 도출에 관한 연구)

  • Kim, Woo-Bum;Park, Hyun-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.383-398
    • /
    • 2012
  • A finite element analysis study was performed to investigate the behavior and strength of a Plate-Circular Hollow Section joint stiffened with Rib-plate, Since The strength of plate-Circular Section joint is reduced by joint of stress and local plastic deformation which is caused by wall moment, rib plates are attached to the upper and lower Plate-Circular Hollow Section joint for redistribution of stress. The behaviors of joints stiffened with Rib-plate according to shape of rib and reinforcing method, etc are different from those of joints which is not stiffened. However, the criterion of hollow structural section was limited on some parts. Therefore, this study intends to investigate the behavior and structural capacity of Plate-Circular Hollow Section joints stiffened with Rib-plate and compare the Finite element analysis with the Design Equation. Finally, this study proposes the reasonable ultimate strength formula through the comparisons with other design guide.

Compressive behavior of circular hollow and concrete-filled steel tubular stub columns under atmospheric corrosion

  • Gao, Shan;Peng, Zhen;Wang, Xuanding;Liu, Jiepeng
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.615-627
    • /
    • 2019
  • This paper aims to study the compressive behavior of circular hollow and concrete-filled steel tubular stub columns under simulated marine atmospheric corrosion. The specimens after salt spray corrosion were tested under axial compressive load. Steel grade and corrosion level were mainly considered in the study. The mechanical behavior of circular CFST specimens is compared with that of the corresponding hollow ones. Design methods for circular hollow and concrete-filled steel tubular stub columns are modified to consider the effect of marine atmospheric corrosion. The results show that linear fitting curves could be used to present the relationship between corrosion rate and the mechanical properties of steel after simulated marine atmospheric corrosion. The ultimate strength of hollow steel tubular and CFST columns decrease with the increase of corrosion rate while the ultimate displacement of those are hardly affected by corrosion rate. Increasing corrosion rate would change the failure of CFST stub column from ductile failure to brittle failure. Corrosion rate would decrease the ductility indexes of CFST columns, rather than those of hollow steel tubular columns. The confinement factor ${\xi}$ of CFST columns decreases with the increase of corrosion rate while the ratio between test value and nominal value shows an opposite trend. With considering marine atmospheric corrosion, the predicted axial strength of hollow steel tubular and CFST columns by Chinese standard agree well with the tested values while the predictions by Japanese standard seem conservative.

MATHEMATICAL MODELLING AND ITS SIMULATION OF A QUASI-STATIC THERMOELASTIC PROBLEM IN A SEMI-INFINITE HOLLOW CIRCULAR DISK DUE TO INTERNAL HEAT GENERATION

  • Gaikwad, Kishor R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2015
  • The present paper deals with the determination of temperature, displacement and thermal stresses in a semi-infinite hollow circular disk due to internal heat generation within it. Initially the disk is kept at arbitrary temperature F(r, z). For times t > 0 heat is generated within the circular disk at a rate of g(r, z, t) $Btu/hr.ft^3$. The heat flux is applied on the inner circular boundary (r = a) and the outer circular boundary (r = b). Also, the lower surface (z = 0) is kept at temperature $Q_3(r,t)$ and the upper surface ($Z={\infty}$) is kept at zero temperature. Hollow circular disk extends in the z-direction from z = 0 to infinity. The governing heat conduction equation has been solved by using finite Hankel transform and the generalized finite Fourier transform. As a special case mathematical model is constructed for different metallic disk have been considered. The results are obtained in series form in terms of Bessel's functions. These have been computed numerically and illustrated graphically.

GREEN'S FUNCTION APPROACH TO THERMAL DEFLECTION OF A THIN HOLLOW CIRCULAR DISK UNDER AXISYMMETRIC HEAT SOURCE

  • GAIKWAD, KISHOR R.;NANER, YOGESH U.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • A Green's function approach is adopted to solve the two-dimensional thermoelastic problem of a thin hollow circular disk. Initially, the disk is kept at temperature T0(r, z). For times t > 0, the inner and outer circular edges are thermally insulated and the upper and lower surfaces of the disk are subjected to convection heat transfer with convection coefficient hc and fluid temperature T∞, while the disk is also subjected to the axisymmetric heat source. As a special case, different metallic disks have been considered. The results for temperature and thermal deflection has been computed numerically and illustrated graphically.

Analytical solution for buckling analysis of micro sandwich hollow circular plate

  • Mousavi, Mohammad;Mohammadimehr, Mehdi;Rostami, Rasoul
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.185-192
    • /
    • 2019
  • In this paper, the buckling of micro sandwich hollow circular plate is investigated with the consideration of the porous core and piezoelectric layer reinforced by functionally graded (FG)carbon nano-tube. For modeling the displacement field of sandwich hollow circular plate, the high-order shear deformation theory (HSDT) of plate and modified couple stress theory (MCST) are used. The governing differential equations of the system can be derived using the principle of minimum potential energy and Maxwell's equation that for solving these equations, the Ritz method is employed. The results of this research indicate the influence of various parameters such as porous coefficients, small length scale parameter, distribution of carbon nano-tube in piezoelectric layers and temperature on critical buckling load. The purpose of this research is to show the effect of physical parameters on the critical buckling load of micro sandwich plate and then optimize these parameters to design structures with the best efficiency. The results of this research can be used for optimization of micro-structures and manufacturing different structure in aircraft and aerospace.

Ductility of Circular Hollow Columns with Internal Steel Tube (강관 코아 합성 중공 기둥의 연성 거동 연구)

  • 강영종;한승룡;박남회
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

Characteristics of Heaving Motion of Hollow Circular Cylinder (내부가 빈 원기둥의 수직운동 특성)

  • Bae, Yoon Hyeok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • In the present investigation, the hydrodynamic characteristics of a vertically floating hollow cylinder in regular waves have been studied. The potential theory for solving the diffraction and radiation problem was employed by assuming that the heave response motion was linear. By using the matched eigenfunction expansion method, the characteristics of the exciting forces, hydrodynamic coefficients, and heave motion responses were investigated with various system parameters such as the radius and draft of a hollow cylinder. In the present analytical model, two resonances are identified: the system resonance of a hollow cylinder and the piston-mode resonance in the confined inner fluid region. The piston resonance mode is especially important in the motion response of a hollow circular cylinder. In many cases, the heave response at the piston resonance mode is large, and its resonant frequency can be predicted using the empirical formula of Fukuda (1977). The present design tool can be applied to analyze the motion response of a spar offshore structure with a moon pool.

Nonlinear Finite Element Analysis of Circular Hollow Reinforced Concrete Columns Based on Design Variables (설계변수에 따른 중공원형 철근콘크리트 교각의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Lee, Seung-Jin;Lee, Byung-Ju;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.35-42
    • /
    • 2011
  • The seismic design of solid reinforced concrete bridge columns has been committed to, based on accumulated research and design specifications. The rational confinement model and seismic performance evaluation, however, are insufficient because of the lack of domestic and foreign design specifications about the experimental and analytical difficulties in the case of circular hollow reinforced concrete columns. In this paper, the seismic behavior of circular hollow reinforced concrete columns and its dependence on design variables are understood and explained. These research results can be used to derive the rational and economical design specifications for circular hollow sectional columns based on the result from the nonlinear analysis program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology).

Detection of the Defect on the Metal Surface Using the Modulated Microwave (변조 고주파에 의한 금속표면 결함 검출)

  • Joo, G.T.;Jung, S.H.;Song, K.Y.;Kim, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • The defects on the metal surface. such as the ended circular pressed hole. the penetrated circular drilled hole, and the linear hollow lanes have been investigated by means of the microwave. In this experiment, frequency was set at 9.2GHz with 3kHz modulation, and the methods of reflection, transmission, fixed carrier frequency, and mod-demodulated technique have been used for investigating defects. The magnitudes of the microwave signals have been changed at the ended circular pressed hole and the penetrated circular drilled hole. The defect sizes that were estimated from the reflected microwave signals had the dimensions enlarged by twice the original size of the penetrated circular drilled hole and 2.5 times the original size of the ended circular pressed hole. The magnitudes of the reflected microwave signals from the linear hollow lane have increased with expansion of the width of the notch. In the linear hollow lane with the depth of 2.4mm, the reflected microwave signals versus the defect widths had a maximum value at the defect width of 50mm, and in the linear hollow lanes with the depths of 1.2mm and 0.45mm, the reflected microwave signals versus the defects widths had the maximum values each at the defect depths of 55mm.

  • PDF