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ABSTRACT. A Green’s function approach is adopted to solve the two-dimensional thermoe-

lastic problem of a thin hollow circular disk. Initially, the disk is kept at temperature T0(r, z).
For times t > 0, the inner and outer circular edges are thermally insulated and the upper and

lower surfaces of the disk are subjected to convection heat transfer with convection coefficient

hc and fluid temperature T∞, while the disk is also subjected to the axisymmetric heat source.

As a special case, different metallic disks have been considered. The results for temperature

and thermal deflection has been computed numerically and illustrated graphically.

1. INTRODUCTION

Roy Choudhury [1] discussed the normal deflection of a thin clamped circular plate due

to ramp-type heating of a concentric circular region of the upper face and the lower face of

the plate kept at zero temperature while the circular edge is thermally insulated. Grysa and

Kozlowski [2] investigated an inverse one-dimensional transient thermoelastic problem and

obtained the temperature and heat flux on the surface of an isotropic infinite slab. Ootao et

al. [3, 4] studied the theoretical analysis of a three-dimensional transient thermal stress prob-

lem for a nonhomogeneous/functionally graded hollow circular cylinder due to a moving heat

source in the axial direction from the inner and outer surfaces. Tanigawa et al. [5] discussed

the theoretical analysis of thermoelastoplastic deformation of a circular plate due to a par-

tially distributed heat supply. Noda et al. [6] discussed the transient thermoelastoplastic bend-

ing problems, making use of the strain increment theorem, and determined the temperature

field and the thermoelastic deformation for the heating and cooling processes in a thin circular

plate subjected to a partially distributed and axisymmetric heat supply on the upper surface.

Received by the editors December 29 2020; Revised March 24 2021; Accepted in revised form March 24 2021;

Published online March 25 2021.

2000 Mathematics Subject Classification. 35B07, 35G30, 35K05, 44A10.

Key words and phrases. Green’s Function, Hollow Circular Disk, Axisymmetric Heat Source, Thermal

Deflection.
† Corresponding author.

1



2 K. R. GAIKWAD AND Y. U. NANER

Chakraborty et al. [7] solved the deflection of a circular plate due to the heating of a concentric

circular region.

Recently, some cases of thermal deflection [7, 8, 9, 10, 11, 12], thermal stresses [13, 14,

15, 16, 17], or both of them [18, 19, 20] have been investigated on thin circular plates of solid

[7, 8, 9, 12, 13, 15, 16, 18, 20] and annular disk [10, 11, 14, 19] under different initial and

boundary conditions/input heat source. Moreover, most of these studies on the thermoelastic

problem of thin-wall plates analysis involving integral transform [7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 18, 19, 20] methods were used to obtain the analytical solution.

In this article, we extended the work of Gaikwad [14] for a two-dimensional Green’s func-

tion approach to the transient thermoelastic problem of a thin hollow circular disk under the

axisymmetric heat source. The convection boundary condition is assumed in this study for both

the upper and lower surfaces of the disk with its inner and outer edges are thermally insulated

and subjected to an axisymmetric heat source. The analytical method of Green’s function is

employed with the help of integral transform technique to determine the temperature distri-

bution function. The thermal deflection is also obtained based on the calculated temperature

distribution considering the state of plane stresses.

The remainder of this study offers the following:

• The governing transient heat conduction equation with the thermoelastic equation of

the thin hollow circular disk understudy is formulated as a boundary value problem.

• The Green’s function method is used to solve the transient heat conduction equation.

• The finite Hankel and Fourier integral transform technique is used to derive Green’s

function.

• Based on the temperature distribution, the thermal deflection in a thin hollow circular

disk is also obtained.

• The mathematical model is prepared for different metallic disks and the results for

temperature, and thermal deflection has been computed numerically and illustrated

graphically with the help of Mathcad software.

It is believed that this particular problem has not been considered by anyone. This is a new

and novel contribution to the field of thermoelasticity. The results presented here will be more

useful in engineering problems particularly, in the determination of the state of strain in a thin

hollow circular disk constituting foundations of containers for hot gases or liquids, in the foun-

dations for furnaces, etc.

2. ANALYSIS

2.1. Transient Heat Conduction Problem. :

We consider a thin hollow circular disk as shown in Fig. 1, of radius a and thickness by

h, the occupying space D is a ≤ r ≤ b, −h/2 ≤ z ≤ h/2 and is initially at temperature

T0(r, z). For t > 0, the fixed circular edges (r = a, r = b) are thermally insulated and the

upper and lower surfaces (z = ±h/2) of the disk are subjected to convection heat transfer

with convection coefficient hc and fluid temperature T∞, while the disk is subjected to the
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FIGURE 1. The Hollow circular disk with an axisymmetric heat source.

axisymmetric heat source g0 (W.m−3). Under these realistic prescribed conditions temperature,

and thermal deflection/stresses in a thin hollow disk due to the axisymmetric heat source are

required to be determined.

The temperature of the hollow circular disk T (r, z, t) at time t satisfies the differential equa-

tion

∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2
+

g0
kt

=
1

α

∂T

∂t
, in a ≤ r ≤ b, −h/2 ≤ z ≤ h/2, t > 0 (2.1)

with the boundary conditions,

T |r=0<∞ (2.2)

∂T

∂r

∣

∣

∣

∣

r=a

= 0 (2.3)

∂T

∂r

∣

∣

∣

∣

r=b

= 0 (2.4)

−kt
∂T

∂z

∣

∣

∣

∣

h/2

= hc( T |z=h/2 −T∞) (2.5)

kt
∂T

∂z

∣

∣

∣

∣

−h/2

= hc( T |z=−h/2 −T∞) (2.6)

and the initial condition,

T |t=0= T0(r, z) (2.7)

where kt is the thermal conductivity, the thermal diffusivity is defined as α = kt/ρc with ρ
and cp denoting the density and specific heat of the material of the hollow disk respectively.

g(r, z, t) = gi(t)δ(r − rc)δ(z − zc) represents an axisymmetric heat source, where gi is an

instantaneous line heat source, and δ is a Dirac delta function that characterizes the location of

the line heat source at rc and zc.
Here the hollow disk is assumed sufficiently thin.
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2.2. Determination of the Temperature. :

First, we modified the formulated boundary value problem with homogeneous boundary

conditions. The temperature field T (r, z, t) is divided into two components, T (r, z, t) =
ψ(r, z, t) + T∞, where the constant ambient component T∞ satisfies Eq. (2.1) and the dy-

namic component ψ satisfies the following equation:

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
∂2ψ

∂z2
+

g0
kt

=
1

α

∂ψ

∂t
(2.8)

with the boundary conditions,

ψ |r=0<∞
∂ψ

∂r

∣

∣

∣

∣

r=a

= 0

∂ψ

∂r

∣

∣

∣

∣

r=b

= 0

(

∂ψ

∂z
+ hs1ψ

)
∣

∣

∣

∣

h/2

= 0

(

∂ψ

∂z
− hs2ψ

) ∣

∣

∣

∣

−h/2

= 0

and the initial condition,

ψ |t=0= T0 − T∞

where hs1 = hc/kt and hs2 = hc/kt be the relative heat transfer coefficients on the upper and

lower surface of the thin hollow circular disk.

To determine the Green’s function, we consider the homogeneous form of Eq. (2.8) with

g0(r, z, t) = 0:

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
∂2ψ

∂z2
=

1

α

∂ψ

∂t
(2.9)

with the boundary conditions,

ψ |r=0<∞ (2.10)

∂ψ

∂r

∣

∣

∣

∣

r=a

= 0 (2.11)

∂ψ

∂r

∣

∣

∣

∣

r=b

= 0 (2.12)

(

∂ψ

∂z
+ hs1ψ

)
∣

∣

∣

∣

h/2

= 0 (2.13)

(

∂ψ

∂z
− hs2ψ

)
∣

∣

∣

∣

−h/2

= 0 (2.14)

and the initial condition,

ψ |t=0= T0 − T∞ = A(r, z) (2.15)
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Secondly, for the temperature function ψ(r, z, t), we introduce the finite Hankel transform

H over the variable r and its inverse transform defined in [21] as:

T (βm, z, t) =

∫ b

r′=a
r′R0(βm, r

′)T (r′, z, t).dr′ (2.16)

T (r, z, t) =
∞
∑

m=1

R0(βm, r)

N(βm)
T (βm, z, t) (2.17)

where

R0(βm, r) =

[

J0(βmr)

J ′

0(βmb)
− Y0(βmr)

Y ′

0(βmb)

]

1

N(βm)
=

π√
2

βmJ
′

0(βmb).Y
′

0(βmb)
[

1− J2
0 (βmb)

J2
0 (βma)

]1/2

and β1, β2, β3, . . . are the positive roots of transcendental equation

J ′

0(βma)

J ′

0(βmb)
− Y ′

0(βma)

Y ′

0(βmb)
= 0.

This transform satisfies the relation

H

[

∂2T

∂r2
+

1

r

∂T

∂r

]

= −β2mT (βm, z, t) (2.18)

Thirdly, for the Hankel-transformed function T (βm, z, t), we introduce the finite Fourier

transform over the variable z and its inverse transform defined in [21] as

T̃ (βm, ηp, t) =

∫ h/2

z=−h/2
Z(ηp, z

′).T (βm, z
′, t).dz′ (2.19)

T (βm, z, t) =
∞
∑

p=1

Z(ηp, z)

N(ηp)
T̃ (βm, ηp, t) (2.20)

where

Z(ηp, z) = ηp cos(ηpz) + hs1 sin(ηpz)

1

N(ηp)
=

√
2

[

(η2p + h2s1)

(

h

2
+

hs2
η2p + h2s2

)

+ hs1

]

−1

and η1, η2, . . . are the positive roots of the transcendental equation

tan

(

ηph

2

)

=
ηp(hs1 + hs2)

η2p − hs1hs2
, p = 1, 2, 3, . . .
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Applying the finite Hankel transform and finite Fourier transform defined in Eqs. (2.16) and

(2.19) and their respective inverses defined in Eqs. (2.17) and (2.20) and operate them on Eqs.

(2.9)-–(2.15):

ψ(r, z, t) =
∞
∑

m=1

∞
∑

p=1

R0(βm, r)Z(ηp, z)

N(βm)N(ηp)
.e−α(β2

m
+η2

p
)t. ˜̄A(βm, ηp)

where

˜̄A(βm, ηp) =

∫ b

r′=a

∫ h/2

z′=−h/2
r′ R0(βm, r

′) Z(ηp, z
′) (T0(r

′, z′)− T∞) dr′ dz′

ψ(r, z, t) can also be given from the Green’s function approach [21]:

ψ(r, z, t) =

∫ b

r′=a

∫ h/2

z′=−h/2
G(r, z, t|r′, z′, τ)|τ=0(T0(r

′, z′)− T∞) r′ dr′ dz′

From the above, the Green’s function can be obtained as:

G(r, z, t|r′, z′, τ) =
∞
∑

m=1

∞
∑

p=1

R0(βm, r)Z(ηp, z)R0(βm, r
′)Z(ηp, z

′)

N(βm)N(ηp)
.e−α(β2

m
+η2

p
)(t−τ)

Finally, the solution of the nonhomogeneous problem of Eqs. (2.1) and (2.2)–(2.7) in terms of

the above Green’s function is given as:

T (r, z, t) = T∞ +

∫ b

r′=a

∫ h/2

z′=−h/2
G(r, z, t|r′, z′, τ)|τ=0 (T0(r

′, z′)− T∞) dr′ dz′

+
α

k t

∫ t

τ=0

∫ b

r′=a

∫ h/2

z′=−h/2
r′ G(r, z, t|r′, z′, τ) g0(r′, z′, τ) dr′ dz′ dt′

(2.21)

2.3. Special Case. :

Setting, T0(r, z) = T∞ and g(r, z, t) = 1(t)δ(r− rc)(z− zc) with 1(t) denoting a unit step

function in Eq. (2.21), the transient temperature field is given as follows:

T (r, z, t) = T0 +
rc
kt

∞
∑

m=1

∞
∑

p=1

R0(βm, r)R0(βm, rc)

[

Z(ηp, z)Z(ηp, zc)(1− e−α(β2
m
+η2

p
)t)

N(βm)N(ηp)(β2m + η2p)

]

(2.22)

3. DETERMINATION OF THERMAL DEFLECTION

The thermal bending problem of a thin disk with a thickness h, it will be assumed that the

deflection, which means a deformation in the out-of-plane direction of the disk, is small. By

Kirchhoff-Love hypothesis that the plane initially perpendicular to the neutral plane of the disk

remains a plane after deformation and is perpendicular to the deformed neutral plane.
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The differential equation satisfied the deflection function ω(r, t) as defined in [22] as

∇2∇2ω = − 1

(1− ν)D
∇2MT (3.1)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
and MT is the thermal moment of the disk, ν is the Poisson’s ratio of the plate material, D is

the flexural rigidity of the disk denoted by

D =
Eh3

12(1− ν2)

The term MT is defined as

MT = αtE

∫ h/2

−h/2
(T (r, z, t)− T0)zdz (3.2)

where αt and E are the coefficients of the linear thermal expansion and the Young’s modulus,

respectively.

For out-of-plane deformation, the boundary conditions are given as

∂ω

∂r

∣

∣

∣

∣

r=a

=
∂ω

∂r

∣

∣

∣

∣

r=b

= 0 (3.3)

Initially

T |t=0= ω |t=0= T0(r, z) (3.4)

Assume the solution of Eq. (3.1) satisfying conditions (3.3) as

ω(r, t) =
∞
∑

m=1

Cm(t)

[

J0(βmr)

J ′

0(βmb)
− Y0(βmr)

Y ′

0(βmb)

]

(3.5)

where β′ms are the positive roots of transcendental equation,

J ′

0(βma)

J ′

0(βmb)
− Y ′

0(βma)

Y ′

0(βmb)
= 0.

It can be easily shown that

∂w

∂r
=

∞
∑

m=1

Cm(t)

[

J ′

0(βmr)

J ′

0(βmb)
− Y ′

0(βmr)

Y ′

0(βmb)

]

∂w

∂r

∣

∣

∣

∣

r=a

=
∂w

∂r

∣

∣

∣

∣

r=b

= 0

Hence, the solution of Eq. (3.5) satisfies the condition of Eq. (3.3).

Now

∇2∇2w =

(

∂2T

∂r2
+

1

r

∂T

∂r

)2 ∞
∑

m=1

Cm(t)

[

J0(βmr)

J ′

0(βmb)
− Y0(βmr)

Y ′

0(βmb)

]

(3.6)
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Using the well-known result:
(

∂2T

∂r2
+

1

r

∂T

∂r

)

J0(βmr) = −β2mJ0(βmr)

(

∂2T

∂r2
+

1

r

∂T

∂r

)

Y0(βmr) = −β2mY0(βmr)

in Eq. (3.6), one obtains

∇2∇2w =
∞
∑

m=1

Cm(t)β4m

[

J0(βmr)

J ′

0(βmb)
− Y0(βmr)

Y ′

0(βmb)

]

(3.7)

The thermal moment could be obtained by substituting Eq. (2.22) into Eq. (3.2):

MT = Dm

∞
∑

m=1

∞
∑

p=1

R0(βm, r)R0(βm, rc)

[

sin(ηph/2)Z(ηp, zc)(1− e−α(β2
m
+η2

p
)t)

N(βm)N(ηp)(β2m + η2p)

]

where Dm =
αtrcE[hη2p + 2hs1]

ktη2p
Now

∇2MT = ∇2Dm

∞
∑

m=1

∞
∑

p=1

R0(βm, r)R0(βm, rc)

[

sin(ηph/2)Z(ηp, zc)(1− e−α(β2
m
+η2

p
)t)

N(βm)N(ηp)(β2m + η2p)

]

(3.8)

solving Eq. (3.8), one obtains

∇2MT = −Dm

∞
∑

m=1

∞
∑

p=1

β2mR0(βm, r)R0(βm, rc)

[

sin(ηph/2)Z(ηp, zc)(1− e−α(β2
m
+η2

p
)t)

N(βm)N(ηp)(β2m + η2p)

]

(3.9)

Substituting Eqs. (3.7) and (3.9) into Eq. (3.1) yields

∞
∑

m=1

Cm(t)β4m

[

J0(βmr)

J ′

0(βmb)
− Y0(βmr)

Y ′

0(βmb)

]

=
Dm

(1− ν)D

∞
∑

m=1

∞
∑

p=1

β2mR0(βm, r)R0(βm, rc)

[

sin(ηph/2)Z(ηp, zc)(1− e−α(β2
m
+η2

p
)t)

N(βm)N(ηp)(β2m + η2p)

]

(3.10)

Solving Eq. (3.10), one obtains

Cm(t) =
Dm

(1− ν)D

∞
∑

m=1

∞
∑

p=1

1

β2m
R0(βm, rc)

[

sin(ηph/2)Z(ηp, zc)(1− e−α(β2
m
+η2

p
)t)

N(βm)N(ηp)(β2m + η2p)

]

(3.11)



THIN HOLLOW CIRCULAR DISK UNDER AXISYMMETRIC HEAT SOURCE 9

Finally, substituting Eq. (3.11) in Eq. (3.5), one obtains the expression for the quasi-static

thermal deflection ω(r, t) as:

ω(r, t) =
Dm

(1− ν)D

∞
∑

m=1

∞
∑

p=1

1

β2m
R0(βm, r)R0(βm, rc)

[

sin(ηph/2)Z(ηp, zc)(1− e−α(β2
m
+η2

p
)t)

N(βm)N(ηp)(β2m + η2p)

]

(3.12)

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Dimension. :

The constants associated with the numerical calculation are taken as:

Inner radius of a circular disk a = 1 m,

Outer radius of a circular disk b = 5 m,

Thickness of circular disk h = 0.5 m,

Constant line heat source gi = 200 W/m,

Initial temperature T0(r, z)=0,

Relative heat transfer coefficients hs1 = 10, hs2 = 0.

4.2. Material Properties. :

The four different materials was chosen for the purpose of numerical evaluation, for which

we take the following values of the physical constants as[23]:

TABLE 1. Thermal properties of materials.

Materials kt cp ρ α αt E ν
(W/m-K) (J/kg-K) (kg/m3) (10−6 m2/s) (10−6 1/K) (GPa)

Aluminum (Al) 204 896 2727 84.18 22.2 70 0.35

Copper (Cu) 386 383 8954 112.34 16.6 117 0.36

Iron (Fe) 72.7 452 7897 20.34 12 193 0.21

Steel 53.6 465 7833 14.74 13 200 0.26

0.5% carbon (St)

4.3. Roots of the Transcendental Equation. :

Here β1 = 3.1965, β2 = 6.3123, β3 = 9.4445, β4 = 12.5812, β5 = 15.7199 are the

positive root of the transcendental equation
[

J ′

0(βa)

J ′

0(βb)
− Y ′

0(βa)

Y ′

0(βb)

]

= 0



10 K. R. GAIKWAD AND Y. U. NANER

and η1 = 1.4289, η2 = 4.3058, η3 = 7.2281, η4 = 10.2003, η5 = 13.2142 are positive roots

of the transcendental equation

tan

(

ηh

2

)

=
η(hs1 + hs2)

η2 − hs1hs2

which takes the form η tan
(η

4

)

= c, for h = 0.5, hs1 = c = 10, hs2 = 0 in [21]. The

numerical calculations have been presented by the PTC MATHCAD (Prime-3.1) and the results

are depicted graphically.

The constants λ0 and µ0 are given as:

λ0 =
Dm.10

4

(1− ν)D
, µ0 =

2µ(1 + ν)αt

107

i.e. elastic material constants.

The obtained expressions for the temperature field and thermal deflection provide important

intuition into the role of the thermomechanical material properties in elastic behaviors of the

thin hollow circular disks under the axisymmetric heat source. The temperature distribution

in the disk is only dependent on its thermal properties, on the other hand, the disk deflection

is dependent on both thermal and mechanical properties. We have used the first 50 terms

(p=1–50) for the inner series summation, as given by Eq. (2.22), and have used the first 10

terms (m=1–10) of the outer series summation. However, for very small times (t<̃1s), the

convergence of the inner series, particularly at r ≃ 0, was closer to 2%; hence exploration of

very small times would require additional terms for the outer series summation (i.e. m >10) to

achieve greater accuracy. The numerical calculations have been carried out for four different

materials (Aluminum, Copper, Iron, and Steel), which have mechanical and thermal properties

as shown in Table 1. Assume that the disk is subjected to a constant heat line source of gi= 200

W/m with initial temperature T0(r, z) = 0.

Figure 2 shows the temperature distribution for the iron disk along with the disk radius at

the lower surface (z = −h/2), when the heat source is located at (rc=4 m and zc=0.5 m) at

times different times ranged from 10s to 5000 s. It should be noted that the disk temperature

gradually increases in the range 1 ≤ r ≤ 4 with increases time, attaining maximum value at

the heat source location, and goes on decreasing towards the outer circular edge. It is clear that

the disk temperature the rate slows down with respect to time as it approaches the steady-state.

Figure 3 shows the temperature distribution for the iron disk along with the disk radius at

the lower surface (z = −h/2), when the heat source is specified with a constant intensity of

gi = 200 W/m, as the heating location with different radii’s on the upper surface (z = h/2)

for steady-state temperature t=3000 s. It can be observed that the maximum temperature stays

around 850 for rc=1.5, 2.5, 3, and 3.5 m, and it becomes 100 and 102 0C for rc=4.5, 4.7 m

respectively. It should be noted that the heat source approaches toward the insulated boundary,

the heat tends to be accumulated locally rather than being dissipated in all directions as it does

at the median area of the disk.

Figure 4 shows the temperature distribution at the lower surface due to axisymmetric heat

source (zc=0.5 m, and t=3000 s) at different radii with increasing heat source intensity rc, that
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FIGURE 2. The temperature distribution at the lower surface due to axisym-

metric heat source (rc=4 m, zc=0.5 m) at different times parameters.

FIGURE 3. The temperature distribution at the lower surface due to axisym-

metric heat source (zc=0.5 m, and t=3000 s) at different radii with constant

heat source intensity (gi = 200 W/m).

is gi=40, 80, 120, 160, 200, and 240 W/m for rc=1.5, 2.5, 3, 3.5, 4.5, and 4.7 m respectively. It

should be noted that the temperature increases monotonically mainly due to the increasing heat

source intensity with rc, because less amount of heat is dissipated as the heat source approaches

closer to the insulated boundary.
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FIGURE 4. The temperature distribution at the lower surface due to axisym-

metric heat source (zc=0.5 m, and t=3000 s) at different radii with increasing

heat source intensity rc.

FIGURE 5. The thermal deflection at the mid-plane due to axisymmetric heat

source (rc=4 m, zc=0.5 m, and t=3000 s).

Figure 5 shows the thermal deflection at the mid-plane (z = 0) of the disk for four different

materials under the same conditions used to obtain Fig. 2. It can be observed that for all materi-

als, the deflection is maximum at the heat source location, and it decreases with increasing r to

reach to zeros. The obtained results show good agreement with boundary conditions (3.3). The

steel (53.6 W/m-K) and iron (72.7 W/m-K) disks have smaller thermal conductivity compared
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with the aluminum and copper disks, so the steel and iron disks have larger deflection than

the aluminum (204 W/m-K) and silver (386 W/m-K) disks. It is due to the larger temperature

gradients induced in the steel and iron disks which results from the lower thermal conductivity

of these materials. However the steel and iron disks have larger Young’s moduli (200 and 193

GPa) compared with the aluminum (70 GPa) and copper (117 GPa) disks, so the steel and iron

disks have larger deflection than the aluminum and copper disks. This conclusion gives us the

knowledge that the material thermal properties have a dominant effect on the thermal deflection

compared to the mechanical properties.

5. CONCLUSIONS

Green’s function approach to analyzing the two-dimensional transient thermoelastic prob-

lem of a thin hollow circular disk under the axisymmetric heat source proposed. The convection

boundary condition is assumed in this study for both the upper and lower surfaces of the disk

with its inner and outer edges are thermally insulated and subjected to an axisymmetric heat

source. The analytical method of Green’s function is employed with the help of an integral

transform technique to determine the temperature distribution function. The thermal deflection

is also obtained based on the calculated temperature distribution considering the state of plane

stresses. We introduce the two-dimensional treatment based on the so-called Kirchhoff-Love’s

hypothesis; thereafter basic equations are derived from the problem. For the thermoelastic de-

formation, the analytical solution is obtained and some important conclusions have been drawn

as follows:

• The temperature distribution per Eq. (2.22) shows the several interesting changes are

rooted in the physics of the boundary condition. The temperature and thermal deflec-

tion occur near the heat source, due to the axisymmetric heat source.

• The convergence of the series summation is rapid for a large time.

• The numerical values of the temperature and thermal deflection for the disk of mate-

rials Steel, Iron, Aluminum, and Copper are in the proportion and follow the relation

Steel ≤ Iron ≤ Aluminum ≤ Copper. We conclude that the thermal conduc-

tivity of material decreases its deflection increases. Hence, these values are inversely

proportional to their thermal conductivity.

• It is observed that the material thermal properties have a dominant effect on the thermal

deflection compared to the mechanical properties.

• It should be noted that a high strength level is needed for a good thermal resistance

material.

The rotating disk has applications in aerospace engineering, particularly in gas turbines and

gears. The rotating disk represents work under thermo-mechanical loads. Also, any particu-

lar case of special interest can be derived by assigning suitable values to the parameters and

functions in the expressions (2.22)–(3.12).
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