• Title/Summary/Keyword: Hollow PC

Search Result 47, Processing Time 0.027 seconds

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

Evaluation of Serviceability to Long Span Hollow Core PC Slab (장스팬 Hollow Core PC 슬래브의 사용성 평가에 관한 연구)

  • Jeong, Hyung-Il;Kang, Ji-Hun;Jang, Dong-Un
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.955-960
    • /
    • 2000
  • This paper evaluates the serviceability of vibration that is induced by people's walking and running when the long span hollow core slab is used. The dynamic characteristics like a natural frequency and a ramping ratio are found by impact loading test on the mock-up structures. Also, the human induced loading test output is evaluated by the various serviceability criteria. As the various serviceability criteria satisfy with this result, the vibration problem of relevant slab caused by people's behavior does not matter.

  • PDF

Strengthening of deficient RC frames with high strength concrete panels: an experimental study

  • Baran, Mehmet;Susoy, Melih;Tankut, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.177-196
    • /
    • 2011
  • An economic, structurally effective and practically applicable strengthening technique was developed for reinforced concrete (RC) framed buildings. The idea of the technique is to convert the existing hollow brick infill wall into a load carrying system acting as a cast-in-place RC infill wall by bonding relatively thin high strength precast concrete PC panels to the plastered hollow brick infill. For this purpose, a total of eight one-third scale, one bay, one story frames were tested under reversed-cyclic lateral loads. Test frames were designed and constructed with common deficiencies observed in practice. Four different panel types were used for strengthening. Test results showed that both strength and stiffness of the frames were significantly improved by the introduction of PC panels. Experimental results were compared with the analytical approaches suggested by the authors.

Experimental Study on Shear Capacity of I-slab System Using Slim Precast Slab Deck (슬림 프리캐스트 슬래브 데크를 사용한 I-슬래브 시스템의 전단 성능에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper presents the shear capacities of hollow slab with plate and octagonal pillar type hollow sphere. Recently, the interest in precast hollow slab system for buildings is growing up according to the demand for high quality control and the increase in slab thickness. A hollow slab system is widely known as one of the effective slab system which can reduce self-weight of slab. However, hollow slabs are vulnerable to the deterioration in the shear strength due to the decrease of concrete at slab web which resists shear. Especially, in case of precast hollow slabs, it has joint surface between precast concrete slab modules along transverse axis of slab, and shear failure, that is caused by cracks at joints, has to be prevented. Therefore, in this study, shear capacity of the I-slab system is evaluated by 3-points-supported shear test along the longitudinal and transverse axis of slab specimen. Test results showed that I-slab had enough shear strength compared to theoretical shear strength even if it included the joint surfaces.

Compressive Behavior of Precast Concrete Column with Hollow Corresponding to Hollow Ratio (중공비율에 따른 중공 프리캐스트 철근콘크리트 기둥의 압축거동)

  • Lee, Seung-Jun;Seo, Soo-Yeon;Pei, Wenlong;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.441-448
    • /
    • 2014
  • From several researches, recently, it was found that using hollowed precast concrete (HPC) column made more compact concrete casting in joint region possible than using normal solid PC (Precast concrete) column. Therefore, the rigidity of joints can be improved like those of monolithic reinforced concrete (RC). After filling the hollow with grout concrete, however, it is expected that the HPC column behaviors like composite structure since PC element and grout concrete have different materials as well as there is a contact surface between two elements. These may affect the structural behavior and strength of the composite column. A compressive strength test was performed for the HPC column with parameter of hollow ratio for the case with and without grout in the hollow and the result is presented in this paper. The hollow ratios in the test are 35, 50 and 59% of whole section of column. Concentrated axial force was applied to top of the specimens supported as pin connection for both ends. In addition, finite element (FE) analysis was performed to simulate the failure behavior of HPC column for axial compression. As a result, it was found that the hollow ratio did not affect the initial stiffness of HPC filled with grout regardless of the strength difference of HPC and grout. However the strength was increased inversely corresponding to the hollow ratio. The structural capacity of HPC without grout closely related to the hollow size. Especially, the local collapse governs the overall failure when the thickness of HPC is too thin. Based on these effect, a suitable equation was suggested for calculation of the compressive strength of HPC column with or without grout. FE analysis considering the contact surface between HPC and grout produced a good result matched to the test result.

Flexural Capacity of the Composite Beam using Angle as a Shear Connector (앵글을 전단연결재로 사용하는 합성보의 휨성능)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Choi, Jong Gwon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.63-75
    • /
    • 2015
  • In this study, Composite beam flexural capacity was investigated experimentally using angle as a shear connector. The main experimental parameters are the size and the spacing of the angle and the overall behavior of before and after composite. Also, the composite beam bending performance when it used with hollow PC slab and the general RC slab was compared. When determining that it synthetically, the flexural capacity of the composite beam with angle shear connector estimated 25% to 55% more strength than the nominal strength. Effects of strength parameters of composite beam by angles shear connector are size and spacing of the angle. As expected, the larger and the narrower spacing of the angles, the more strength the composite beam have. In addition, the performance of the composite beam with a hollow slab was well demonstrated by the test.

Flexural Behaviour of Encased Composite Beam with Precast Hollow Core Slabs and Channels (속빈 PC 슬래브와 채널을 사용한 매입형 합성보의 휨 거동)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.493-504
    • /
    • 2008
  • This paper deals with the experimental analysis of the flexural behaviour of encased composite beams with hollow core slabs and channels. The shear force between steel beams and hollow core slabs are transferred by channels. Three full-scale specimens were constructed and tested with different steel beam heights, which were compared with those of previous studies. Based on observation of the experiments, the encased composite beams exhibited full shear connection behaviour without any other shear connectors due to their inherent mechanical and chemical bond stress. Experimental results show a behaviour similar to steel-concrete composite beams with classical connectors: elastic and yield domains, great ductility, flexural failure mode (plastic hinge), low relative movement at steel-concrete interface and all specimens failed in a very ductile manner. Consequently, this study enables the validation of the proposed connection device under static loading and shows that it meets modern structural requirements.

Benefit·Cost Analysis of Combine Method Using Hollow Precast Concrete Column (중공 PC기둥 복합공법의 편익-비용 분석)

  • Kim, Jae-Yeob;Park, Byeong-Hun;Lee, Ung-Kyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.429-436
    • /
    • 2016
  • Because of the shortage of construction workers due to The rising labor costs and an aging labor force, construction time has been extended. As a solution, The construction time of high-rise buildings can be reduced by adopting precast concrete construction methods. Most relevant studies have focused on the development and structural analysis of such methods and not on their construction management. Therefore, this study focused on the construction management of the hollow precast concrete column (HPC) method. The objective of this study was to evaluate the performance of HPC formulations through the analytic hierarchy process and benefit-cost analysis. After a gap analysis of the available literature and expert interviews, the evaluation criteria were selected. A questionnaire survey was administered to professionals with ample experience in precast concrete construction for the pair-wise evaluation of the benefit and costs of the HPC method. The results show that the benefits of the HPC method outweighed its costs. Therefore, the HPC method is a suitable substitute for the half-slab method.

Study on the Optical Properties of Light Diffusion Film with Plate Type Hollow Silica

  • Lee, Ji-Seon;Moon, Seong-Cheol;Noh, Kyeong-Jae;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.429-437
    • /
    • 2017
  • Micro hollow plate type silica with low refraction properties was synthesized and its hollow structure was applied as an optical structure to develop a light diffusion material that simultaneously satisfies the requirements of good light diffusibility, high transmissibility, and high luminance. The developed light diffusion material was applied to a light diffusion film and the film's optical properties were assessed. Hollow silica was synthesized by precipitation method using $Mg(OH)_2$ core particles, sodium silicate, and ammonium sulfate as the silica precursors. The concentration of the silica precursor was adjusted to control hollow silica shell thickness. The total light transmittance of the light diffusion film composed of the hollow silica was 94.55%, which was 4.57% higher than that of the PC film; new film's haze was 71.20%, which was 70.9% higher. Furthermore, the luminance increased by 5.34% compared to that of the light source. The reason for the results is not only that the micro plate type hollow silica, which has a low refractive property, played a role in reducing the difference in refractive index between the medium boundaries, but also that there was a light-concentrating effect due to the changing of light paths to the front direction inside the hollow structure. Optical simulation verified the enhanced optical properties when hollow silica was applied to the light diffusion film.

Construction Cost Analysis of HPC Method by PC Construction Project Cases (사례분석에 의한 HPC공법의 공사비 분석)

  • Noh, ju-seong;Kim, Jae-yeob
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.101-102
    • /
    • 2017
  • This study was carried out as basic study to apply to construction site the HPC method which is being developed. The construction cost of HPC method was analyzed in comparison with conventional method (half slab method). With regard to research method, it was decided that data on construction work carried out by half slab method was analyzed. According to the results of study, in case of being applied to the construction work using a divided column, the number of columns was decreased. So, it was shown that member production cost, and transport and assemblage cost reduced. In case of being applied to construction work using an undivided column, the analysis showed that there was little difference in construction cost. Therefore, the analysis showed that, if HPC construction method was applied to large structure using a large column, the construction cost was reduced to some extent in comparison with conventional half slab method.

  • PDF