• 제목/요약/키워드: Hollow Fiber Reactor

검색결과 35건 처리시간 0.047초

미생물 입체선택성 가수분해반응을 이용한 광학활성 1,2-epoxy-7-octene 생산을 위한 Hollow-fiber 반응기 시스템 개발 (Development of Hollow-fiber Reactor System for the Production of Chiral 1,2-epoxy-7-octene by Microbial Enantioselective Hydrolysis Reaction)

  • 이은열;김희숙
    • KSBB Journal
    • /
    • 제16권3호
    • /
    • pp.259-263
    • /
    • 2001
  • The development of hollow fiber reactor system for the production of chiral 1,2-epoxy-7-octence by epoxide hydrolase for Rhodotorula glutinis was investigated. Dodecane with high solubility of the racemic substrate passed through the lumen side of the hollow fiber reactor and cell suspension was recirculated through the shell side. The 2nd hollow fiber reactor was coupled to the production reactor to extract the diol byproduct which was the inhibitor of epoxide hydrolase. Optically pure (S)-1,2-epoxy-7-octene (0.6 M in dodecane) could be obtained using hollow-fiber reactor system.

  • PDF

Rhodosporidium toruloides를 이용한 Hollow-fiber 반응기에서의 광학활성 Phenyl Oxirane 생산 (Production of Chiral Phenyl Oxirane by Rhodosporidium toruloides in Hollow-fiber Reactor)

  • 김희숙;박성훈;이은열
    • 생명과학회지
    • /
    • 제13권6호
    • /
    • pp.788-793
    • /
    • 2003
  • Rhodosporidium toruloides SJ-4의 epoxide hydrolase의 입체선택적 가수분해 반응을 이용하여 hollow-fiber 반응기에서 라세믹 phenyl oxirane 기질로부터 광학활성 phenyl oxirane을 생산하였다. 라세믹 에폭사이드 기질의 수용액 상에서의 낮은 용해도로 인한 저농도 반응의 문제점을 극복하기 위하여 dodecane 유기용매에 용해시켜 lumen 부위로 공급하였으며, 생촉매인 R. toruloides 세포 현탁액은 수용액강인 shell 부위에 위치시킴으로써 유기용매 사용에 따른 생촉매 활성 저하를 줄인 1단계 반응기 시스템에서는 200 mM의 고농도에서 (S)-phenyl oxirane을 생산할 수 있었다. 또한, 반응 산물로 생성되는 diol에 의한 생촉매 활성저해효과를 감소시키기 위하여 2단계 hollow-fiber 반응기에서는 완충용액을 이용하여 diol을 제거시킨 결과 300 mM에서 EH 활성을 이용한 입체선택적 가수분해반응을 수행할 수 있었으며, 200∼300 mM의 고농도 라세믹 기질로부터 99% ee 이상의 광학순도를 가진 (S)-phenyl oxirane을 이론 수율 대비 12∼35% 수율로 얻을 수 있었다.

미생물 유래의 Epoxide Hydrolase를 이용한 Chiral Styrene Oxide 생산용 비대칭 광학분할시스템개발 (Development of Asymmetric Resolution System for the Production of Chiral Styrene Oxide by Microbial Epoxide Hydrolase)

  • 이지원;윤여준;이은열
    • 생명과학회지
    • /
    • 제12권5호
    • /
    • pp.584-588
    • /
    • 2002
  • Apergillus niger LK의 epoxide hydrolase 활성을 이용하여 chiral styrene oxide를 제조할 수 있는 hollow-fiber 반응기 기반의 비대칭 분할 시스템을 개발하였다. 라세믹 styrene oxide 기질을 dodecane 유기용매에 용해시켜 hollow-fiber 반응기의 lumen 부위로 공급하였으며, 생촉매인 A. niger LK 미세분말은 shell 부위로 공급함으로써 막 표면에서 비대칭 분할 반응을 수행하였다. 반응 산물로 생성되는 phenyl-1,2-ethandiol에 의한 epoxide hydrolase 활성 저해효과를 감소시키기 위하여 2번째 hollow-fiber 반응기에서 완충용액을 이용하여 diol을 추출하여 제거시켰다. 2성분 용매를 사용한 cascade형 hollow-fiber 반응기 시스템을 이용하여 광학적으로 순수한 (ee > 99%) (5)-styrene oxide를 19.5% (이론 수율 대비 39%)의 수율로 얻을 수 있었다.

이중층 중공사 생물막 담체를 이용한 유동층 생물막 반응기에서의 동시 질산화와 탈질 (Simultaneous Nitrification and Denitrification in a Fluidized Biofilm Reactor with a Hollow Fiber Double Layer Biofilm Media)

  • 이수철;이현용;김동진
    • KSBB Journal
    • /
    • 제15권5호
    • /
    • pp.514-520
    • /
    • 2000
  • Simultaneous nitrification and denitrification of ammonia and organic compounds-containing wastewater were performed in a fluidized bed biofilm reactor with polysulfone(PS) hollow fiber as a double layer biomass carrier. The PS hollow fiber fragment has both aerobic and anoxic environments for the nitrifiaction and denitrification at the shell and lumen-side respectively. The reactor system showed about 80% nitrification efficiency stably throughout the ammonia load conditions applied in the experiment. Denitrification efficiency depended on organic load and C/N ratio. High free ammonia concentration and low dissolved oxygen resulted in nitrite accumulation which leads to enhance organic carbon efficiency in denitrification when compared to nitrate denitrification. The simultaneous nitrification and denitrification reactor system has an economic advantages in reduced chemical cost of organic carbon for denitrification as well as compact reactor configuration.

  • PDF

중공사막을 적용한 2단 멤브레인 하이브리드 반응기에 의한 톨루엔 제거 (Removal of toluene using the 2-stage hollow fiber membrane-hybrid reactor)

  • 김진성;구소희;김태형;이명주;황선진
    • 상하수도학회지
    • /
    • 제24권3호
    • /
    • pp.287-293
    • /
    • 2010
  • In this study, the toluene gas in VOCs was removed using bioreactor which applied with hollow fiber membrane and Pseudomonas sp. TDB-4. The EBRT of each reactor are controlled 60 sec(R-1) and 30 sec(R-2) and inlet tolune concentration of both R-1 and R-2 is controlled from 25ppm to 500 ppm. Up to 500 ppm of toluene concentration, the toluene removal efficiency of R-1 and R-2 are 92% and 81%, and theirs removal capacities are about 100 g/$m^3$/hr and 180 g/$m^3$/hr, respectively. In addition, according to this study, toluene removal efficiencies at the hollow fiber are approximately 70%(60 sec) and 45%(30sec).

Hollow Fiber Recycle Reactor를 이용한 알콜연속 발효 (Continuous Alcohol Fermentation by Cell Recycling Using Hollow Fiber Recycle Reactor)

  • 이시경;박경호;백운화;장호남
    • 한국미생물·생명공학회지
    • /
    • 제14권2호
    • /
    • pp.193-198
    • /
    • 1986
  • Sacch. cerevisiae var. ellipsoideus 균주를 이용산업용 천연맥즙배지를 사용한 알콜연속 발효시 Hollow Fiber Recycle Reactor를 of용 Cell Recycle을 시켜 발효조내의 알콜 생산성을 높이기 위해 본 실험을 실시하였으며, 특히 Batch식과 연속발효시 HFR유무에 따른 특성을 비교 검토한 결과를 요약하면 다음과 같다. 1 Dilution rate가 0.1h$^{-1}$일때 11$^{\circ}$P 및 15$^{\circ}$P media를 이용한 알콜 연속발효에서 알콜농도는4.71% 및 5.82%(v/v) 이었으며 이때의 발효율은 각각 86.2%와 78.6 % 이었다. 2. HFR연속발효에서 D=0.1h$^{-1}$일때 알콜농도는 7.64% (v/v)로 높았으며, 이때의 생산성은 6.1g/l/h이었다. 또한 D=0.2h$^{-1}$일때 알콜농도와 생산성은 각각 7.62%(v/v) 및 12.2g/l/h/이었다. 3. HFR연속발효에서 D=0.3h$^{-1}$일때 알콜농도가 7.54% (v/v) 이었으며 알콜생산성은 18.1g/l/h 이었다. 4 알콜 생산성 비교에서 HFR 연속발효는 연속발효에 비해 4배의 증가효과가 있었으며 Batch발효에 비해서는 16.3배나 크게 증가하였다.

  • PDF

중공사 정밀여과 MBR공정을 이용한 제직폐수의 재이용 (Reuse of Weaving Wastewater by Membrane Bioreactor Equipped with a Hollow-fiber MF Membrane)

  • 정용준;배종홍;민경석
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.365-369
    • /
    • 2004
  • Submerged membrane bio-reactor equipped with a hollow fiber microfiltration was applied to reuse weaving wastewater of water jet loom, where two parameters such as the concentration of MLSS and the flux were controlled. While the flux at the concentration of MLSS around 900mg/L was constantly kept over 0.4m/d and 0.8m/d in a short time, the stable flux at around 300mg/L of MLSS was shown at the 8 days later. Regardless of MLSS and flux, BOD, CODcr and Turbidity of the permeate were 1~2mg/L, 7~10mg/L and below 1 NTU, which were 85~90%, 87~90% and 98% of removal efficiency, respectively. The stable operation without fouling was achieved because the contents of ECP were smaller than those of common MBR processes and the composition(saccharide/protein) was kept constantly. In this study, 0.5~1.0m/d of flux and 400~900mg/L of MLSS were considered as the most recommendable operating condition for the reuse of weaving wastewater.

Membrane-Attached Biofilm Reactor(MABR)에서의 독립영양 미생물을 이용한 질소 제거 (Nitrogen Removal using Autotrophic Microorganism in Membrane-Attached Biofilm Reactor (MABR))

  • 신정훈;상병인;정윤철;정연규
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.624-629
    • /
    • 2005
  • The purpose of this study is to investigate the performance of nitrogen removal using autotrophic microorganism in the Membrane-Attached Biofilm Reactor (MABR). The treatment system consists of an aerobic MABR (R1) for nitrification and an anaerobic MABR (R2) for hydrogenotrophic denitrification. Oxygen and hydrogen were supplied through the lumen of hollow-fiber membranes as electron acceptor and donor, respectively. In phase Ι, simultaneous organic carbon removal and nitrification were carried out successfully in R1. In phase II, to develop the biofilm on the hollow-fiber membrane surface and to acclimate the microbial community to autotrophic condition, R1 and R2 were operated independently. The MABRs, R1 and R2 were connected in series continuously in phase III and operated at HRT of 8 hr or 4 hr with $NH_4{^+}-N$ concentration of influent, from 150 to 200 mgN/L. The total nitrogen removal efficiency reached the maximum value of 99% at the volumetric nitrogen loading rate of $1.20kgN/m^3{\cdot}d$ in the combined MABR system with R1 and R2. The results in this study demonstrated that the combined MABR system could operate effectively for the removal of nitrogen in wastewater not containing organic materials and can be used stably as a high rate nitrogen removal technology.

THE EFFECT OF AIR BUBBLES FROM DISSOLVED GASES ON THE MEMBRANE FOULING IN THE HOLLOW FIBER SUBMERGED MEMBRANE BIO-REACTOR (SMBR)

  • Jang, Nam-Jung;Yeo, Young-Hyun;Hwang, Moon-Hyun;Vigneswaran, Saravanamuthu;Cho, Jae-Weon;Kim, In S.
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.91-98
    • /
    • 2006
  • There is a possibility of the production of the air bubbles in membrane pores due to the reduction in pressure during membrane filtration. The effect of fine air bubbles from dissolved gases on microfiltration was investigated in the submerged membrane bio-reactor (SMBR). The $R_{air}$ (air bubble resistance) was defined as the filtration resistance due to the air bubbles formed from the gasification of dissolved gases. From the results of filtration tests using pure water with changes in the dissolved oxygen concentration, the air bubbles from dissolved gases were confirmed to act as a foulant and; thus, increase the filtration resistance. The standard pore blocking and cake filtration models, SPBM and CFM, respectively, were applied to investigate the mechanism of air bubble fouling on a hollow fiber membrane. However, the application of the SPBM and CFM were limited in explaining the mechanism due to the properties of air bubble. With a simple comparison of the different filtration resistances, the $R_{air}$ portion was below 1% of the total filtration resistance during sludge filtration. Therefore, the air bubbles from dissolved gases would only be a minor foulant in the SMBR. However, under the conditions of a high gasification rate from dissolved gases, the effect of air bubble fouling should be considered in microfiltration.