• Title/Summary/Keyword: Hollow Fiber

Search Result 631, Processing Time 0.026 seconds

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.

Purification and Characterization Sucrose phosohorylase in Leuconostoc mesenteroides NRRL B-1149 (Leuconostoc mesenteroides NRRL B-1149의 Sucrose phosohorylase의 분리와 특성 연구)

  • Lee Jin Ha;Park Jun Seong;Park Hyen Joung;Cho Jae Young;Choi Jeong Sik;Kim Do Man
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.363-367
    • /
    • 2004
  • Leuconostoc mesenteroides NRRL B-1149 produces various glucoseyltransferases for the synthesis of dextran, levan and glucose-1-phosphate using sucrose as a substrate. A sucrose phosphorylase (1149SPase) was purified from L. mesenteroides NRRL B-1149 culture by using hollow fiber filtration (30 kDa cut off), Toyopearl DEAE 650 M column chromatography and following two times of DEAE-Sepharose column chromatographies. The specific activity of the purified 1149SPase was 25.7 (U/mg) with $16\%$ yield. The 1149SPase showed a molecular size of 56 kDa on denatured $10\%$ SDS-PAGE. The N-terminal amino acid sequence of the enzyme was MEIQNKAM. The optimum pH and temperature of this enzyme were 6.2~6.5 and 37^{circ}C, respectively. It had an apparent K_{m} of 6.0 mM and K_{cat} of 1.62/s for sucrose. 1149SPase crystal was formed by hanging drop diffusion technique using 20 mM calcium chloride dihydrate, 100 mM sodium acetate trihydrate pH 4.6 and $30\%$ 2-methyl-2,4-pentanediol as vaporizing and reservation solution. The 1149SPase catalyzes transferring of glucose from isomaltose or sucrose to salicin and salicyl alcohol by disproportionation reaction or acceptor reaction and synthesized two acceptor products, respectively.

The Preparation of Storage-Stable Liquid Dyes by Counter Diffusion (역확산을 이용한 액체염료의 제조)

  • Park, Jong-Sang;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.399-410
    • /
    • 1991
  • New separation process was developed for the preparation of storage-stable liquid dyes. The extent of aggregation of dye molecules was measured with respect to storage time of liquid dyes under different salt environments. Hollow-fiber membranes were modified by immobilization of inorganic crystals onto the surface of membrane. Using surface-treated membranes, counter diffusion technology was introduced to selectively remove salts from dye solution. The separation factors were 10-700, and the loss of dye molecules was less than 0.4 %. Membrane permeabilities for sodium ions($U_{M,Na}$) and dye molecules($U_{M,Dye}$) were found to be 2.75 and $0.72l/m^2/hr$, respectively, in the case of surface-treated membranes. The effects of various operating parameters on desalting efficiency were also investigated.

  • PDF

Adsorption of Heavy Metal Ions onto Chemically Oxidized Ceiba pentandra (L.) Gaertn. (Kapok) Fibers

  • Chung, Byung-Yeoup;Cho, Jae-Young;Lee, Min-Hee;Wi, Seung-Gon;Kim, Jin-Hong;Kim, Jae-Sung;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.28-35
    • /
    • 2008
  • The physico-chemical properties of kapok fibers were altered via the combination processes of chlorite-periodate oxidation, in order to assess their efficacy as a heavy metal adsorbent. The chemically-oxidized kapok fibers were found to harbor a certain amount of polysaccharides, together with lowered lignin content. This alteration in lignin characteristics was clearly confirmed via FTIR and NBO yield. Moreover, chemically oxidized kapok fibers retained their hollow tube shape, although some changes were noted. The chemically oxidized kapok fibers evidenced elevated ability to adsorb heavy metal ions with the best fit for the Langmuir adsorption isotherm model. Three cycles of adsorption-desorption were conducted with in-between regeneration steps. Our experimental results indicated that chemically oxidized kapok fibers possessed excellent adsorption characteristics, and the modified kapok fibers could be completely regenerated with almost equimolar diluted sodium hydroxide. Pb, Cu, Cd and Zn ions evidenced adsorption rates of 93.55%, 91.83%, 89.75%, and 92.85% on the chemically oxidized kapok fibers. The regeneration efficiency showed 73.58% of Pb, 71.55% of Cu, 66.87% of Cd, and 75.00% of Zn for 3rd cycle with 0.0125N NaOH.

The Effect of Pulsatile Flow on Ultrafiltration In-Vitro Study and Comparison with Roller Pump

  • Lee K.;Jeong J. H.;Mun C. H.;Lee J. C.;Min B. G.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.337-341
    • /
    • 2005
  • Blood pulsation has been reported to have an advantageous effect on extracorporeal blood circulation. However, the study of pulsatile blood flow in renal replacement therapy is very limited. The in-vitro experimental results of pulsatile blood flow on ultrafiltration, when compared with the conventional roller pump, are described in this paper. Methods: Blood flow rate (QB) and transmembrane pressure (TMP) were considered as regulating factors that have an influence on ultrafiltration. Experiments were performed under the condition of equal TMP and OB in both pulsatile and roller pump groups, Several kinds of hollow fiber dialyzers were tested using distilled water containing chemicals as a blood substitute. Mean TMP (mTMP) varied from 10 to 90mmHg while the QB was 200ml/min. Results: Ultrafiltration rate (QUF) was found to be linearly proportional to TMP, whereas QB had little influence on QUF. In addition, QUF was higher in the pulsatile group than the roller pump group at the identical TMP. Conclusion: In the controlled test, QUF increased solely as a consequence of blood pulsation, which implies that the pulse frequency represents an additional and important clinical variable during renal replacement therapy.

Enhanced performance of thin-film nanocomposite RO/NWF membrane by adding ZnO nanospheres in aqueous phase during interfacial polymerization process

  • Li, Hongbin;Shi, Wenying;Su, Yuheng;Hou, Hongxiang;Du, Qiyun;Zhang, Haixia;Qin, Xiaohong
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.225-244
    • /
    • 2017
  • A novel thin-film nanocomposite (TFN) reverse osmosis (RO)/non-woven fabric (NWF) membrane was prepared by adding zinc oxide (ZnO) nanospheres ($30{\pm}10nm$) during the interfacial polymerization process of m-phenylenediamine (MPD) and trimesoyl chloride (TMC) on self-made polysulfone (PSF) membrane/polyester (PET) non-woven fabric support. The improved performance of TFN RO membrane was verified in terms of water contact angle (WCA), water flux, salt rejection, antifouling properties and chlorine resistance. The results showed that the WCA value of TFN RO surface had a continuous decrease with the increasing of ZnO content in MPD aqueous solution. The water flux of composite TFN RO membranes acquired a remarkable increase with a stable high solute rejection (94.5 %) in $1g{\cdot}L^{-1}$ NaCl aqueous solution under the optimized addition amount of ZnO (1 wt%). The continuous testing of membrane separation performance after the immersion in sodium hypochlorite solution indicated that the introduction of ZnO nanospheres also dramatically enhanced the antifouling properties and the chlorine resistance of composite RO membranes.

혐기성 박테리아균인 Zymomonas mobilis을 이용한 알코올 발효와 투과증발법을 이용한 알코올의 분리 농축에 관한 연구

  • Jo, Byeong-Ju;Choe, Cheol-Ho;Lee, Yeong-Mu;Lee, Ui-Sang
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.256-259
    • /
    • 2000
  • Ethanol fermentration of glucose by a strain of Zymomonas mobilis KCTC 1535 was studied in membrane recycle bioreactor, which was coupled with closs flow hollow fiber membrane. The maximum values of product yields and productivity are 0.4685g total ethanol/ g glucose, 14.05g total ethanol/ L/h, respectively The pervaporation performance of the PDMS menbrane has been investigated for the separation of binary mixtures of EtOH/water at $50^{\circ}C{\sim}70^{\circ}C$. The optimum conditions of feed concentration, temperature, feed solution flow rates is determined to be 8%, $70^{\circ}C$, 492ml/min, respectively. An ethanol permselectivity of 7.5 and flux of $0.04kg/m^2/hr$ were obtained with these membrane

  • PDF

Thermophilic Hydrogen Production from Microbial Consortia Using PVDF Membrane Bioreactor (PVDF 여과막 생물막 반응기를 이용한 혐기 세균 복합체의 고온 수소생산)

  • Oh, You-Kwan;Lee, Dong-Yeol;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.223-229
    • /
    • 2007
  • 여과막 생물반응기를 이용하여 $60^{\circ}C$에서 혐기 세균 복합체가 포도당으로부터 수소를 생산할 수 있는 최적조건을 연구하였다. 여과막 생물반응기는 연속교반 탱크반응기와 외부에 장착된 PVDF (polyvinylidene fluoride) 중공사막 여과장치로 구성되었다. 접종슬러지는 하수처리장 소화 슬러지조에서 얻었고, 포자형성 수소생산 미생물을 얻기 위해 $90^{\circ}C$에서 20분 간 열처리하였다. 16S rRNA PCR-DGGE(polymer chain reaction-denaturing gradient gel electrophoresis) 분석을 통해 열처리 전후의 미생물상 변화를 조사하였다. 열처리 후 DGGE 밴드의 수는 감소하였고, 주요 밴드는 Clostridium perfringens와 유사한 염기서열을 나타내었다. 운전 기간 동안 바이오가스 내 수소함량은 60%(v/v)를 유지하였고, 메탄은 검출되지 않았다. 연속교반 탱크반응기를 여과막 없이 수력학적 체류 4시간에서 운전하였을 때 공급된 포도당의 95.0%가 제거되었고, 이때 균체농도 및 수소생산속도는 각각 1.35 g cell/L 및 7.4 L $H_2$/L/day이었다. 동일한 체류시간에서 PVDF중공사막 여과장치를 장착하여 연속교반 탱크반응기를 운전하였을 때, 균체농도는 1.62 g cel/L로 증가하였고 높은 포도당 제거율(99.5%) 및 수소생산속도(8.8 L $H_2$/L/day)가 관찰되었다. 40 nm 및 100 nm의 공극크기를 가진 여과막은 균체농도 및 수소생산 측면에서 유사한 성능을 나타내었다. 여과막 생물반응기는 여과막의 반복적인 세척을 통해 30일 이상 안정적으로 운전될 수 있었다.

Chitosan Stimulates Calcium Uptake and Enhances the Capability of Chinese Cabbage Plant to Resist Soft Rot Disease Caused by Pectobacterium carotovorum ssp. carotovorum

  • Jang, Eun-Jung;Gu, Eun-Hye;Hwang, Byoung-Ho;Lee, Chan;Kim, Jong-Kee
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.137-143
    • /
    • 2012
  • Chinese cabbage plant was grown hydroponically for 4 weeks in order to examine the temporal relationship of calcium concentration of the nutrient solution with calcium content in the leaf tissue and susceptibility of the tissue to soft rot disease by $Pectobacterium$ $carotovorum$ ssp. $carotovorum$ (Pcc). Calcium concentration from 0.5 to 32.0 mM was maintained for 1 week using Hoagland & Arnon solution. The calcium content of the leaf was proportionally increased to the concentration of the nutrient in the solution (r = 0.912). In contrast, the severity of soft rot symptom in the young leaves was inversely related with the amount of calcium supplied to the nutrient solution (r = 0.899). Water-soluble chitosan, prepared by hollow fiber filtration (> 100 kDa) was applied into the nutrient solution from 0.0 to 5,000 ppm. The chitosan of 10 ppm was the most effective to promote calcium uptake of the leaf, showing 155% of the control. The same chitosan solution prohibited most soft rot development of the leaf by Pcc, exhibiting only 53% of the control. Among different molecular weight fractions, chitosan fraction obtained from 30-100 kDa molecular weight cut-off promoted calcium uptake the most up to 163% of the control, and reduced the development of soft rot disease recording merely 36% of the control of the leaf tissue. The results obtained in the present study suggest that large scale production of water-soluble chitosan with an optimum molecular weight and its commercial application to Chinese cabbage production will be important to improve yield and quality of the crop.

Development of High-rate Nitrogen Removal Process Using Submerged MBR Packed with Granular Sulfur of Pilot Scale Plant (Pilot Scale Plant의 황 충진 MBR을 이용한 고효율의 질소제거 공법 개발)

  • Mun, Jin-Yeong;Hwang, Yong-U;Jo, Hyeon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, a process combined biofiltration with sulfur-utilizing autotrophic denitrification and membrane separation was proposed to examine the efficiency of nitrogen removal. As an experimental device, hollow-fiber module was installed in the center of reactor to generate the flux forward sulfur layer in the cylinder packed with granular sulfur. In addition, a simple module was installed in activated sludge aeration tank which inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. The experiment for developing new MBR process was carried out for three years totally. As the results of first two-year experiment, successful nitrogen removal performance was revealed with lab-scale test and pliot scale plant using artificial wastewater and actual plating wastewater. In this year, pilot scale test using actual domestic wastewater was performed to prove field applicability. As the results, high-rate nitrogen removal performance was confirmed with about 0.19 kg ${NO_3}^--N/m^3$ day of rate. Also significant fouling and pressure increase were not found during the experiment. And, the production ratio of sulfate and the consumption ratio of alkalinity showed a slightly higher value about 311 mg ${SO_4}^{2-}/L$ and 369 mg $CaCO_3$/L, respectively. In conclusion, the developed MBR process can be utilized as an alternative for retrofiting existing wastewater plants as well as new construction of advanced sewage wastewater treatment plants, with cost-effective merit.