Browse > Article

Purification and Characterization Sucrose phosohorylase in Leuconostoc mesenteroides NRRL B-1149  

Lee Jin Ha (The Engineering Research Institute, Chonnam National University)
Park Jun Seong (Department of Materials and Biochemical Engineering, Chonnam National University)
Park Hyen Joung (Department of Materials and Biochemical Engineering, Chonnam National University)
Cho Jae Young (Department of Materials and Biochemical Engineering, Chonnam National University)
Choi Jeong Sik (Biology Research Center for Industrial Accelerator, Dongshin University)
Kim Do Man (School of Biological Sciences and Technology and Research Institute for Catalysis, Chonnam National University)
Publication Information
KSBB Journal / v.19, no.5, 2004 , pp. 363-367 More about this Journal
Abstract
Leuconostoc mesenteroides NRRL B-1149 produces various glucoseyltransferases for the synthesis of dextran, levan and glucose-1-phosphate using sucrose as a substrate. A sucrose phosphorylase (1149SPase) was purified from L. mesenteroides NRRL B-1149 culture by using hollow fiber filtration (30 kDa cut off), Toyopearl DEAE 650 M column chromatography and following two times of DEAE-Sepharose column chromatographies. The specific activity of the purified 1149SPase was 25.7 (U/mg) with $16\%$ yield. The 1149SPase showed a molecular size of 56 kDa on denatured $10\%$ SDS-PAGE. The N-terminal amino acid sequence of the enzyme was MEIQNKAM. The optimum pH and temperature of this enzyme were 6.2~6.5 and 37^{circ}C, respectively. It had an apparent K_{m} of 6.0 mM and K_{cat} of 1.62/s for sucrose. 1149SPase crystal was formed by hanging drop diffusion technique using 20 mM calcium chloride dihydrate, 100 mM sodium acetate trihydrate pH 4.6 and $30\%$ 2-methyl-2,4-pentanediol as vaporizing and reservation solution. The 1149SPase catalyzes transferring of glucose from isomaltose or sucrose to salicin and salicyl alcohol by disproportionation reaction or acceptor reaction and synthesized two acceptor products, respectively.
Keywords
Leuconostoc mesenteroides; sucrose phosphorylase; purification; crystal; acceptor reaction; disproportionation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Silverstein, R., J. Voet, D, Reed, and R. H. Abeles (1967), Purification and mechanism of action of sucrose phosphorylase, J. Biol. Chem. 242, 1338-1346
2 Koga, T., K. Nakamura, Y. Shirokane, K. Mizusawa, S. Kitao, and M. Kikuchi (1991), Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides, Agric. Biol. Chem. 55, 1805-1810
3 Russel, R. R. B., H. Mukasa, A. Shimamura, and J. J. Ferretti (1988), Streptococcus mutans gtfA gene specifies sucrose phosphorylase, Infect. Immun. 56, 2763-2765
4 Ferretti, J. J., T. T. Huang, and R. R. B. Russell (1988), Sequence analysis of the glucosyltransferase A gene (gftA) from Streptococcus mutans Ingbritt, Infect. Immun. 56, 1585-1588
5 Weimberg, R. and M. Doudoroff (1953), Studies with three bacterial sucrose phosphorylases, J. Bacteriol. 68, 381-388
6 Kitao, S., S. Yoshida, T. Horiuchi, H. Sekine, and I. Kusakabe (1994), Formation of kojibiose and nigerose by sucrose phosphorylase, Biosci. Biotechnol. Biochem. 58, 790-791
7 Kitao S., T. Matsudo, M. Saitoh, T. Horiuchi, and H. Sekine (1995), Enzymatic syntheses of two stable (-)-epigallocatechin gallate-glucosides by sucrose by sucrose phosphorylase, Biosci. Biotechnol. Biochem. 59, 2167-2169
8 Kitao, S., T. Matsudo, T. Sasaki, T. Koga, and M. Kawamura (2000), Enzymatic synthesis of stable, odorless, and powdered furanone glucosides by sucrose phosphorylase, Biosci. Biotechnol. Biochem. 64, 134-141
9 Maestre, E., I. Katakis, and E. Domnguez (2001), Amperometric flowinjection determination of sucrose with a mediated tri-enzyme electrode based on sucrose phosphorylase and electrocatalytic oxidation of NADH, Biosens. Bioelectron. 16, 61-86
10 Allene, J., W. C. Haynes, C. A. Wilham, J. C. Rankin, E. H. Melvin, M. J. Austin, J. E. Cluskey, B. E. Fisher, H. M. Tsuchiya, and C. E. Rist (1954), Characterization and classification of dextrans from ninety-six strains of bacteria1b, J. Am. Chem. Soc. 76, 5041-5052
11 Lineweaver, H., and D. Burk (1934), The determination of enzyme dissociation constants, J. Am. Chem. Soc. 56, 658-666
12 Kitao, S. and H. Sekine (1994b), Syntheses of two kojic acid glucosides with sucrose phosphorylase from Leuconostoc mesenteroides, Biosci. Biotechnol. Biochem. 58, 419-420
13 Fournier, P., P de Ruffray, and L. Otten (1994), Natural instability of Agrobacterium vitis Ti plasmid due to unusual duplication of a 2.3-kb DNA fragment, Mol. Plant. Microbe. Interact. 7, 164-172
14 Doudoroff, M., W. Z. Hassid, H. A. Barker (1947b), Studies with bacterial sucrose phosphorylase II. Enzymatic synthesis of a new reducing and of a new non-reducing disaccharide, J. Biol. Chem. 168, 733-746
15 Kawasaki, H., N. Nakamura, M. Ohmori, and T. Sakai (1996b), Cloning and expression in Escherichia coli of sucrose phosphorylase gene from Leuconostoc mesenteroides No. 165, Biosci. Biotechnol. Biochem. 60, 322-324
16 Kitao, S. and H. Sekine (1992), Transglucosylation catalyzed by sucrose phosphorylase from Leuconostoc mesenteroides and production of glucosyl-xylitol, Biosci. Biotechnol. Biochem. 56, 2011-2014
17 Kitao, S. and E. Nakano (1992), Cloning of the sucrose phosphorylase gene from Leuconostoc mesenteroides and its overexpression using a 'sleeper' bacteriophage vector, J. Ferment. Bioeng. 73, 179-184
18 Tanirseven, A. and J. F. Robt (1993), Interperation of dextransucrase inhibition at high sucrose concentration, Carbohydr. Res. 245, 97-104
19 Kitao, S. and H. Sekine (1994a), $\alpha$-D-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of $\alpha$ -arbutin, Biosci. Biotechnol. Biochem. 58, 38-42
20 Kawasaki, H., N. Nakamura, M. Ohmori, K. Amari, and T. Sakai (1996a), Screening for bacteria producing sucrose phosphorylase and characterization of the enzymes, Biosci. Biotechnol. Biochem. 60, 319-321
21 Birnberg, P. R. and M. L. Brenner (1984), A one-step enzymatic assay for sucrose with sucrose phosphorylase, Anal. Biochem. 142, 556-561
22 Otter, T. S., M. King, and G. B. Whiteman (1987), A two-step procedure for efficient electrotransfer of both high-molecular weight (>400,000) and low-molecular weight (<20,000) proteins, Anal. Biolchem. 162, 370-377
23 Cote, G. L., and J. A. Ahlgren (1995), Microbial polysaccharides, In Kirk-Othmer encyclopedia of chemical technology, 4th ed., vol. 16. p. 578-611. John Wiley & Sons, Inc., New York, N.Y
24 Doudoroff, M. (1943), Studies on the phosphorylsis of sucrose, J. Biol. Chem. 151, 351-361
25 Kogure, M., H. Mori, H. Ariki, C. Kojima, and H. Yamamoto (1997), Determination of sucrose using phosphorylase in a flowinjection system, Anal. Chim. Acta. 337, 107-111
26 Kitao, S., T. Ariga, T. Matsudo, and H. Sekine (1993), The syntheses of catechin-glucosides by transglycosylation with Leuconostoc mesenteroides sucrose phosphorylase, Biosci. Biotechnol. Biochem. 57, 2010-2015
27 Laemmli, U. K. (1970), Cleavage of Structural Proteins During the assembly of the head of bacteriophage T4, Nature. 227, 680-685
28 Tedokon, M., K. Suzuki, Y. Kayamori, S. Fujita, and Y. Katayama (1992), Enzymatic assay of inorganic phosphate with use of sucrose phosphorylase and phosphoglucomutase, Clin. Chem. 38, 512-515
29 Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254