• Title/Summary/Keyword: Hole transport materials

Search Result 127, Processing Time 0.033 seconds

Preparation and Characteristics of Organic Electroluminescence Devices using Multilayer Structure with Carrier Transport Materials (다층막 구조를 이용한 유기 EL소자의 제작과 특성에 관한 연구)

  • Lee, Sang-Youn;Kim, Young-Kwan;Kim, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1563-1565
    • /
    • 1997
  • Electroluminescence(EL)devices based on organic thin layers have attracted lot of interests because of their possible application as large-area light-emitting display. One of the problems of such devices is lifetime of the cell, where the degradation of the cell is partially due to the crystalliyzation of organic layers. In large part, this problem can be solved by using a multilayer device structure prepared by vapor deposition technique. In this study, blue lightemitting multilayer organic electroluminescence devices were fabricated using Poly (9-vinyl-carbazole) (PVK) and 2-(4'-tert-butylpheny])-5-(4"-bis-phenyl)1,3,4-oxadiazole (PBD) as hole trasport and electron transport material, respectively, where tris(8-hydroxyquinolinate) aluminum (Alq3) was used as a luminescenct material. A cell structure of glass substrate/indume-tin-oxide(ITO)/PVK/$Alq_3$/PBD/Mg:In was employed.

  • PDF

Improvement of hole transport from p-Si with interfacial layers for silicon solar cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.239.2-239.2
    • /
    • 2016
  • Numerous studies and approaches have been performed for solar cells to improve their photoelectric conversion efficiencies. Among them, the study for electrode containing transparent conducting oxide (TCO) layers is one of issues as well as for the cell structure based on band theory. In this study, we focused on an interfacial layer between p-type silicon and indium tin oxide (ITO) well-known as TCO materials. According to current-voltage characteristics for the sample with the interfacial layers, the improvement of band alignment between p-type silicon and ITO was observed, and their ohmic properties were enhanced in the proper condition of deposition. To investigate cause of this improvement, spectroscopic ellipsometry and ultraviolet photoelectron spectroscopy were utilized. Using these techniques, band alignment and defect in the band gap were examined. The major materials of the interfacial layer are vanadium oxide and tungsten oxide, which are notable as a hole transfer layer in the organic solar cells. Finally, the interfacial layer was applied to silicon solar cells to see the actual behavior of carriers in the solar cells. In the case of vanadium oxide, we found 10% of improvement of photoelectric conversion efficiencies, compared to solar cells without interfacial layers.

  • PDF

Electroluminesent Properties of Phenothiazyl Derivatives Having Aromatic Moieties

  • Kim, Soo-Kang;Kang, In-Nam;Park, Jong-Wook;Kim, Kyoung-Soo;Choi, Cheol-Kyu;Lee, Sang-Do
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.9-12
    • /
    • 2006
  • This paper reports the synthesis and electroluminescent properties of new aromatic compounds as hole-transporting materials based on phenothiazine, such as 1,4-diphenothiazyl-benzene [DPtzB], 1,4-diphenothiazyl-xylene [DPtzX] and 9,10-diphenothiazyl-anthracene [DPtzA]. DPtzB thin film exhibited photoluminescence (PL) maximum emission peak and emission shoulder at 450 and 475 nm, and a maximum emission at 447 nm without emission shoulder was obtained in DPtzX thin film. When DPtzA was excited by incident light of 359 nm, DPtzA showed strong PL emission at 417 nm and weak emission at 600 nm. Luminance efficiency of DPtzB, DPtzX and DPtzA-based electroluminescence (EL) devices was 3.57, 3.46 and 0.47 cd/A, and power efficiency of DPtzB, DPtzX and DPtzA-based EL devices was 1.48, 1.26 and 0.201 m/W.

Role of a ZnO buffer layer for the formation of epitaxial NiO films

  • Gwon, Yong-Hyeon;Cheon, Seong-Hyeon;Lee, Ju-Ho;Lee, Jeong-Yong;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.85-85
    • /
    • 2012
  • NiO는 니켈 공공과 침입형 산소 이온에 의한 비화학적양론 특성 때문에 자발적으로 p-형 반도체 특성을 나타내는 것으로 알려져 있다. NiO는 3.7 eV 의 넓은 밴드갭을 가지고 있어 투명소자를 위한 hole injection layer 나 hole transport layer로 사용하기 위한 연구가 많이 이루어지고 있다. 또한, 안정적인 p-형 반도체 특성은 n-형 산화물 반도체와의 접합을 통해 복합소자의 구현이 용이하기 때문에, ZnO 등과의 접합을 통한 소자 구현이 가능하다.[1] 하지만, 기존의 많은 연구에서는 내부의 결함이 많이 존재하는 다결정 박막을 사용하였기 때문에, 전하의 이동에 제한이 발생해, 충분한 소자 특성을 나타내지 못하였다. 최근 Dutta의 연구에 의하면, 결정질 사파이어 기판위에 박막을 성장할 경우 [111] 방향으로 우선 배향성을 가진 NiO 박막을 얻을 수 있다고 알려져 있다.[2] 본 실험에서는 NiO 박막을 이용한 PN 접합소자 구현을 위해 사파이어 위에 p-NiO 박막을 에피택셜하게 성장한 후 구조적 특성을 분석하였으며, n-ZnO 박막을 그 위에 성장하여 소자를 제작하였다. 그 결과 ZnO 또한 에피택셜한 성장을 하는 것을 확인할 수 있었다. 성장순서에 따른 PN 접합구조 특성을 확인하기 위해 사파이어 위에 ZnO 를 성장시킨 후 NiO 를 성장시킨 결과 NiO 박막의 우선성장 방향이 [100]으로 변하는 것을 확인할 수 있었다.

  • PDF

A Study on the Bottom-Emitting Characteristics of Blue OLED with 7-Layer Laminated Structure (7층 적층구조 배면발광 청색 OLED의 발광 특성 연구)

  • Gyu Cheol Choi;Duck-Youl Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.244-248
    • /
    • 2023
  • Recently, displays play an important role in quickly delivering a lot of information. Research is underway to reproduce various colors close to natural colors. In particular, research is being conducted on the light emitting structure of displays as a method of expressing accurate and rich colors. Due to the advancement of technology and the miniaturization of devices, the need for small but high visibility displays with high efficiency in energy consumption continues to increase. Efforts are being made in various ways to improve OLED efficiency, such as improving carrier injection, structuring devices that can efficiently recombine electrons and holes in a numerical balance, and developing materials with high luminous efficiency. In this study, the electrical and optical properties of the seven-layer stacked structure rear-light emitting blue OLED device were analyzed. 4,4'-Bis(carazol-9-yl)biphenyl:Ir(difppy)2(pic), a blue light emitting material that is easy to manufacture and can be highly efficient and brightened, was used. OLED device manufacturing was performed via the in-situ method in a high vacuum state of 5×10-8 Torr or less using a Sunicel Plus 200 system. The experiment was conducted with a seven-layer structure in which an electron or hole blocking layer (EBL or HBL) was added to a five-layer structure in which an electron or hole injection layer (EIL or HIL) or an electron or hole transport layer (ETL or HTL) was added. Analysis of the electrical and optical properties showed that the device that prevented color diffusion by inserting an EBL layer and a HBL layer showed excellent color purity. The results of this study are expected to greatly contribute to the R&D foundation and practical use of blue OLED display devices.

Performance enhancement of perovskite solar cells using Ag nanoparticles via aerosol technology (에어로졸 기술로 제작된 은 나노 입자를 활용한 페로브스카이트 태양전지 성능 향상 연구)

  • Sua Park;Inyong Park;Dae Hoon Park;Bangwoo Han;Gunhee Lee;Min-cheol Kim
    • Particle and aerosol research
    • /
    • v.19 no.2
    • /
    • pp.21-30
    • /
    • 2023
  • Solar cells, converting abundant solar energy into electrical energy, are considered crucial for sustainable energy generation. Recent advancements focus on nanoparticle-enhanced solar cells to overcome limitations and improve efficiency. These cells offer two potential efficiency enhancements. Firstly, plasmonic effects through nanoparticles can improve optical performance by enhancing absorption. Secondly, nanoparticles can improve charge transport and reduce recombination losses, enhancing electrical performance. However, factors like nanoparticle size, placement, and solar cell structure influence the overall performance. This study evaluates the performance of silver nanoparticles incorporated in a p-i-n structure of perovskite solar cells, generated via aerosol state by the evaporation and condensation system. The silver nanoparticles deposited between the hole transport layer and transparent electrode form nanoparticle embedded transport layer (NETL). The evaluation of the optoelectronic properties of perovskite devices using NETL demonstrates their potential for improving efficiency. The findings highlight the possibility of nanoparticle incorporation in perovskite solar cells, providing insights for sustainable energy generation.

Charge transport materials for the manufacture of OLEDs

  • Kathirgamanathan, Poopathy;Surendrakumar, S.;Ganeshamurugan, S.;Kumaraverl, M.;Paramaswara, G.;Partheepan, A.;Ravichandran, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.357-362
    • /
    • 2006
  • OLEDs are becoming established as a commercially viable flat panel display technology of choice of the $21^{st}$ century because of its lightweight, fast response time, lower thickness than LCD's and potentially low cost (1-2). For the OLEDs to function effectively, highly thermally stable materials, which offer high efficiency and long operational lifetimes are required. To achieve long lifetime, highly stable charge (both holes and electrons) transporters are essential. OLED-T provides these materials as well as fluorescent and phosphorescent dopants. This paper reports a unique patented hole injector (E9363) and an electron transporter (E246) that increases the lifetime and efficiency and reduces operating voltage. Further, an electron injector, EEI-101, which evaporates at a very low temperature of $300^{\circ}C$ as opposed to the conventional LiF, which requires $580^{\circ}C$, is also presented.

  • PDF

Effect of plasma polythiophene as a buffer layer inserted on OLEDs (버퍼층으로서 플라즈마 polythiopheneol 유기EL소자에 미치는 영향)

  • Park, S.M.;Lee, B.J.;Kim, H.G.;Lim, K.B.;Kim, J.T.;Park, S.H.;Lim, E.C.;Lee, E.H.;Lee, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.177-180
    • /
    • 2002
  • The purpose of this thesis is to develope buffer materials by the plasma polymerization method. In this article the buffer materials, plasma poly thiophene(PPTh) is used to study the interface of eter/organic in organic light emitting diodes(OLED). The interface of meter/organic materials is the important and critical objectives in development of OLED. The hole transport layer was N,N'-dipheneyl-N, N'bis-(3-methypheneyl)-1,1'dipheneyl-4,4'-diamine (TPD); the host material of mission layer was 8-tris-hydroxyquinoline aluminium (Alq3). When PPTh was inserted between ITO and TPD, emission efficiency increased.

  • PDF

A Study on Dependent Characteristic between The Organic Deposition Rate and The Performance in Organic Light Emitting Device

  • Kim, Mun-Su;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.150.2-150.2
    • /
    • 2015
  • In this study, we analyzed the electric and optical characteristics by using various deposition rate ($0.5{\AA}$, $1.0{\AA}$ and $1.5{\AA}/s$) in order to enhance the performance in organic light-emitting devices (OLED). The organic multi-layer structures were deposited with NPB ($500{\AA}$ as hole transport layer), Alq3 ($600{\AA}$ as electron transport layer and emission layer) and LiF ($8{\AA}$ as electron injection layer) via SUNIC PLUS200 on Glass/ITO substrates. In this experiment, we examined the relationship between porous state of organic deposition and mobility of the organic materials. Among the three deposition rates, $0.5{\AA}/s$ achieved the highest performance of (10,786cd/m2, 4.387cd/A) comparing with that of $1{\AA}/s$ (7,779cd/m2, 3.281cd/A) and $1.5{\AA}/s$ (5,167cd/m2, 2.693cd/A). We confirmed that low deposition rate helps to arrange organic materials densely and to move easily another atomic location using inter-chain transporting by orbital overlap.

  • PDF

ZnO nanoparticles with different concentrations inside organic solar cell active layer

  • Saravanan, Shanmugam;Ismail, Yasser A.M.;Silambarasan, Murugesan;Kishi, Naoki;Soga, Tetsuo
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • In the present work, ZnO nanoparticles (NPs) have been dispersed alone in the same solvent of the active layer for improving performance parameters of the organic solar cells. Different concentrations of the ZnO NPs have been blended inside active layer of the solar cell based on poly(3-hexylthiophene) (P3HT), which forms the hole-transport network, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), which forms the electron-transport network. In the present investigations, the ZnO NPs may represent an efficient tool for improving light harvesting through light scattering inside active layer, electron mobility, and electron acceptance strength which tend to improve photocurrent and performance parameters of the investigated solar cell. The fill factor (FF) of the ZnO-doped solar cell increases nearly 14% compared to the non-doped solar cell when the doping is 50%. The present investigations show that ZnO NPs improve power conversion efficiency of the solar cell from 1.23% to 1.64% with increment around 25% that takes place after incorporation of 40% as a volume ratio of the ZnO NPs inside P3HT:PCBM active layer.