• Title/Summary/Keyword: Hole Recovery

Search Result 42, Processing Time 0.025 seconds

A Sensing Radius Intersection Based Coverage Hole Recovery Method in Wireless Sensor Network (센서 네트워크에서 센싱 반경 교차점 기반 홀 복구 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.431-439
    • /
    • 2021
  • Since the sensor nodes are randomly arranged in the region of interest, it may happen that the sensor network area is separated or there is no sensor node in some area. In addition, after the sensor nodes are deployed in the sensor network, a coverage hole may occur due to the exhaustion of energy or physical destruction of the sensor nodes. The coverage hole can greatly affect the overall performance of the sensor network, such as reducing the data reliability of the sensor network, changing the network topology, disconnecting the data link, and worsening the transmission load. Therefore, sensor network coverage hole recovery has been studied. Existing coverage hole recovery studies present very complex geometric methods and procedures in the two-step process of finding a coverage hole and recovering a coverage hole. This study proposes a method for discovering and recovering a coverage hole in a sensor network, discovering that the sensor node is a boundary node by itself, and determining the location of a mobile node to be added. The proposed method is expected to have better efficiency in terms of complexity and message transmission compared to previous methods.

Uniform Sensor-node Request Scheme for the Recovery of Sensing Holes on IoT Network (IoT 네트워크의 센싱홀 복구를 위한 센서 이동 균등 요청 방법)

  • Kim, Moonseong;Park, Sooyeon;Lee, Woochan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.9-17
    • /
    • 2020
  • When IoT sensor nodes are deployed in areas where data collection is challenging, sensors must be relocated if sensing holes occur due to improper placement of sensors or energy depletion, and data collection is impossible. The sensing hole's cluster header transmits a request message for sensor relocation to an adjacent cluster header through a specific relay node. However, since a specific relay node is frequently used, a member sensor located in a specific cluster area adjacent to the sensing hole can continuously receive the movement message. In this paper, we propose a method that avoids the situation in which the sensing hole cluster header monopolizes a specific relay node and allows the cluster header to use multiple relay nodes fairly. Unlike the existing method in which the relay node immediately responds to the request of the header, the method proposed in this paper solves a ping-pong problem and a problem that the request message is concentrated on a specific relay node by applying a method of responding to the request of the header using a timer. OMNeT++ simulator was used to analyze the performance of the proposed method.

The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient (송출공의 회전이 송출계수와 압력계수에 미치는 영향)

  • Ha, Kyoung-Pyo;Ku, Nam-Hee;Kauh, S.Ken
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

The effect of fixation plate use on bone healing during the reconstruction of mandibular defects

  • Hong, Khang Do Gia;Kim, Seong-Gon;Park, Young-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.5
    • /
    • pp.276-284
    • /
    • 2019
  • Objectives: This study sought to compare efficiency results between the use of a customized implant (CI) and a reconstruction plate (RP) in mandibular defect reconstruction in an animal model. Materials and Methods: Fifteen rabbits underwent surgery to create a defect in the right side of the mandible and were randomly divided into two groups. For reconstruction of the mandibular defect, the RP group (n=5) received five-hole mini-plates without bone grafting and the CI group (n=10) received fabricated CIs based on the cone-beam computed tomography (CBCT) data taken preoperatively. The CI group was further divided into two subgroups depending on the time of CBCT performance preoperatively, as follows: a six-week CI (6WCI) group (n=5) and a one-week CI (1WCI) group (n=5). Daily food intake amount (DFIA) was measured to assess the recovery rate. Radiographic images were acquired to evaluate screw quantity. CBCT and histological examination were performed in the CI subgroup after sacrifice. Results: The 1WCI group showed the highest value in peak average recovery rate and the fastest average recovery rate. In terms of reaching a 50% recovery rate, the 1WCI group required the least number of days as compared with the other groups ($2.6{\pm}1.3days$), while the RP group required the least number of days to reach an 80% recovery rate ($7.8{\pm}2.2days$). The 1WCI group showed the highest percentage of intact screws (94.3%). New bone formation was observed in the CI group during histological examination. Conclusion: Rabbits with mandibular defects treated with CI showed higher and faster recovery rates and more favorable screw status as compared with those treated with a five-hole mini-plate without bone graft.

Design of Multistage Orifices for PIC System in Nuclear Reactor (원자로 압력 및 체적제어계통의 다단 오리피스 설계)

  • Shin, J.C.
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.17-21
    • /
    • 2015
  • Restriction orifices in the feed and bleed circuit of nuclear power plant are designed using computer program capable of handling multiple hole cascade orifice assembly. Single hole stages of orifice assembly are alternated with multihole stages where necessary. The distance between stages is such that it allows full pressure recovery. The minimum static pressure is higher than vapor pressure at the operating temperature so that cavitation does not occur. Piping sizes are reviewed and increased if necessary to improve rigidity.

Adjacent Matrix-based Hole Coverage Discovery Technique for Sensor Networks

  • Wu, Mary
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.169-176
    • /
    • 2019
  • Wireless sensor networks are used to monitor and control areas in a variety of military and civilian areas such as battlefield surveillance, intrusion detection, disaster recovery, biological detection, and environmental monitoring. Since the sensor nodes are randomly placed in the area of interest, separation of the sensor network area may occur due to environmental obstacles or a sensor may not exist in some areas. Also, in the situation where the sensor node is placed in a non-relocatable place, some node may exhaust energy or physical hole of the sensor node may cause coverage hole. Coverage holes can affect the performance of the entire sensor network, such as reducing data reliability, changing network topologies, disconnecting data links, and degrading transmission load. It is possible to solve the problem that occurs in the coverage hole by finding a coverage hole in the sensor network and further arranging a new sensor node in the detected coverage hole. The existing coverage hole detection technique is based on the location of the sensor node, but it is inefficient to mount the GPS on the sensor node having limited resources, and performing other location information processing causes a lot of message transmission overhead. In this paper, we propose an Adjacent Matrix-based Hole Coverage Discovery(AMHCD) scheme based on connectivity of neighboring nodes. The method searches for whether the connectivity of the neighboring nodes constitutes a closed shape based on the adjacent matrix, and determines whether the node is an internal node or a boundary node. Therefore, the message overhead for the location information strokes does not occur and can be applied irrespective of the position information error.

A Study on Flowfield and Pressure Recovery in a Conical Diffuser with a Swirl Flow (유입 선회류에 대한 원추디퓨져내의 속도분포와 정압회복특성에 관한 연구)

  • Jeong, Hyo-Min;Koh, Dae-Kwon;Yang, Jung-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.151-156
    • /
    • 1992
  • The purpose of this paper is to investigate the relationship between static pressure recovery and velocity distributions in case of swirling flow into a conical diffuser. In this research, velocity distribution is measured by a multi-hole yaw-meter. The following conclusions can be drawn from the experiments. (1) The static pressure recovery depends strongly on the strength of a swirl. (2) A high pressure recovery coefficient is achieved by inserting a solid core into the diffuser center.

  • PDF

Key-hole Technique in Treatment of A-C Dislocation - Preliminary Report - (Key-hole 술식을 이용한 급성 견봉쇄골관절 탈구의 치료-예비보고-)

  • Choi Chang-Hyuk;Kwun Koing-Woo;Kim Shin-Kun;Lee Sang-Wook;Yun Young-Jun
    • Clinics in Shoulder and Elbow
    • /
    • v.2 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • The results of the operative treatment of the Grade III acromioclavicular joint injury is defined by the durability of the reduced joint and free of exertional pain. Several surgical techniques have been applied to reduce and stabilize the joints effectively. Resection of clavicular lateral end and subacromial decompression also could be applied to prevent post-operative arthritic change. Biomechanical studies reveals the role of clavicular elevation and rotation to achieve more than 90 degrees of elevation. It also serves as a attachment site of deltoid and trapezius muscle. The stability and mobility of the both acromioclavicular and coracoclavicular joint are important to get full functional recovery. We modified the methods of coracoacromial ligament transfer described by Weaver-Dunn and by Shoji et a!. to pre­vent pullout of the transferred ligament and to get more improved functional results. Main technical point was harvesting full thickness bone block and fix it through the key-hole to reduce pull out angle.

  • PDF

Coupled solid and fluid mechanics simulation for estimating optimum injection pressure during reservoir CO2-EOR

  • Elyasi, Ayub;Goshtasbi, Kamran;Hashemolhosseini, Hamid;Barati, Sharif
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.37-57
    • /
    • 2016
  • Reservoir geomechanics can play an important role in hydrocarbon recovery mechanism. In $CO_2$-EOR process, reservoir geomechanics analysis is concerned with the simultaneous study of fluid flow and the mechanical response of the reservoir under $CO_2$ injection. Accurate prediction of geomechanical effects during $CO_2$ injection will assist in modeling the Carbon dioxide recovery process and making a better design of process and production equipment. This paper deals with the implementation of a program (FORTRAN 90 interface code), which was developed to couple conventional reservoir (ECLIPSE) and geomechanical (ABAQUS) simulators, using a partial coupling algorithm. A geomechanics reservoir partially coupled approach is presented that allows to iteratively take the impact of geomechanics into account in the fluid flow calculations and therefore performs a better prediction of the process. The proposed approach is illustrated on a realistic field case. The reservoir geomechanics coupled models show that in the case of lower maximum bottom hole injection pressure, the cumulative oil production is more than other scenarios. Moreover at the high injection pressures, the production rates will not change with the injection bottom hole pressure variations. Also the FEM analysis of the reservoir showed that at $CO_2$ injection pressure of 11000 Psi the plastic strain has been occurred in the some parts of the reservoir and the related stress path show a critical behavior.

A Performance Study of Vent Mixer with Geometric Characteristics in Supersonic Flow (초음속 유동 내 벤트 혼합기의 형상적 특성에 따른 성능 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • This paper studies the aerodynamic performance that the vent mixer-new conceptual supersonic mixer-showed with its geometric characteristics. The hole is 2 mm with 2 mm's distance from the wall in case 1 and with no distance in case 2. In case 3 die hole is 1 mm. Case 1 and case 2 showed the same total pressure recovery ratio, of which the case 3 was lower than that. While cases 1-3 had the same reattachment length, the shear layer was thicker in cases 1 and 2 than in case 3. Within the recirculation zone, cases 1 and 2 had lower pressure loss and higher velocity gradient difference than case 3-they enhance mixing between air and fuel. Separation bubble which is developed by the inflow into the recirculation zone has a significant effect on the total pressure recovery ratio in the combustor. Also separation bubble influences pressure distributions and recirculation flows in the recirculation zone. Therefore, inflow rate of air into the recirculation zone mainly affects the performance of vent mixer.