• Title/Summary/Keyword: Hole Machining

Search Result 261, Processing Time 0.026 seconds

A Study on the Detection of the Drilled Hole State In Drilling (드릴 가공된 구멍의 상태 검출에 관한 연구)

  • 신형곤;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.8-16
    • /
    • 2003
  • Monitoring of the drill wear :md hole quality change is conducted during the drilling process. Cutting force measured by tool dynamometer is a evident feature estimating abnormal state of drilling. One major difficulty in using tool dynamometer is that the work-piece must be mounted on the dynamometer, and thus the machining process is disturbed and discontinuous. Acoustic transducer do not disturb the normal machining process and provide a relatively easy way to monitor a machining process for industrial application. for this advantage, AE signal is used to estimate the abnormal fate. In this study vision system is used to detect flank wear tendency and hole quality, there are many formal factors in hole quality decision circularity, cylindricity, straightness, and so of but these are difficult to measure in on-line monitoring. The movement of hole center and increasement of hole diameter is presented to determine hole quality. As the results of this experiment AE RMS signal and measurements by vision system are shorn the similar tendency as abnormal state of drilling.

A Study on Micro-hole machining for Ceramics(A1$_2$O$_3$) Using Ultrasonic vibration (초음파 진동을 이용한 세라믹스의 미세 구멍 가공 기술)

  • 이봉구;최헌종;이석우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.988-992
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramics in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvements in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by the electrical or chemical characteristics of the work material, making it suitable for application to ceramics. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

A Study on the Characteristics of Micro Deep Hole Machining in Micro Drilling Machine (마이크로 드릴링 M/C에 의한 미세구멍가공특성에 관한 연구)

  • 민승기;이동주;이응숙;강재훈;김동우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, the trends of industrial products grow more miniaturization, variety and mass production. Micro drilling which take high precision in cutting work is requested more micro hole and high speed working. Especially, Micro deep hole drilling is becoming more important in a wide spectrum of precision production industries, ranging from the production of automotive fuel injection nozzle, watch and camera parts, medical needles, and thick multi-layered Printed Circuit Boards(PCB) that are demanded for very high density electric circuitry. This paper shows the tool monitoring results of micro drill with tool dynamometer. And additionally, microscope with built-in monitor inspection show the relationship between burr in workpiece and chip form of micro drill machining.

  • PDF

Micro Hole Machining by EDM Using Insulated Tool Combined with Ultrasonic Vibration of Dielectric Fluid (가공액의 초음파 진동 및 절연 공구를 이용한 미세방전가공)

  • Park, Min-Soo;Chung, Do-Kwan;Lee, Kang-Hee;Chu, Chong-Nam
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.180-186
    • /
    • 2011
  • This paper describes a micro electrical discharge machining (MEDM) technique that uses an insulated tool in combination with ultrasonic vibration to drill micro holes. As the machining depth becomes deeper, the dispersion of debris and circulation of the dielectric fluid are difficult to occur. Consequently, machining becomes unstable in the machining region and unnecessary electrochemical dissolution and secondary discharge sparking occur at the tool side face. To reduce the amount of unnecessary side machining, an insulated tool was used. Ultrasonic vibration was applied to the MEDM work fluid to better remove debris. Through these methods, a $1000\;{\mu}m$ thick stainless steel plate was machined by using a $73\;{\mu}m$ diameter electrode. The diameters of the hole entrance and exit were $96\;{\mu}m$ and $88\;{\mu}m$, respectively. It took only 351s to completely drill one hole.

A Study on The On-line Detection of the Abnormal State in Drilling. (드릴링시 가공이상상태의 온라인 검출에 관한 연구)

  • 신형곤;박문수;김민호;김태영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1038-1042
    • /
    • 2002
  • Monitoring of the drill wear and hole quality change is conducted during the drilling process. Cutting force measured by tool dynamometer is a evident feature estimating abnormal state of drilling. One major difficulty in using tool dynamometer is that the work piece must be mounted on the dynamometer, and thus the machining process is disturbed and discontinuous. Acoustic transducer do not disturb the normal machining process, and provide a relatively easy way to monitor a machining process for industrial application. For this advantage, AE signal is used to estimate the abnormal state. In this study vision system is used to detect flank wear tendency and hole quality, there are many formal factors in hole quality decision circularity, cylindricity, straightness, and so on, but these are difficult to measure in on-line monitoring. The movement of hole center and increasement of hole diameter is presented to determine hole quality As the results of this experiment, AE RMS signal and measurements by vision system are shown the similar tendency as abnormal state of drilling. And detection of the abnormal states using BPNs was achieved 96.4% reliability.

  • PDF

Evaluation on Effect of Hole Machining for Application of M1.0 Subminiature Screw to CFRP Laminate Using FEM (FEM을 이용한 M1.0 초소형 나사 적용을 위한 CFRP 적층판의 홀 가공 영향평가)

  • Kim, Dae Young;Kim, Hee Seong;Kim, Ji Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.95-99
    • /
    • 2017
  • The recent development of core techniques in the IT industry can be summarized as a technical advancement for safety and convenience, and mechanical technology for being "eco-friendly" and lightweight. Under these circumstances, research of lightweight material has become attractive. In this study, CFRP (Carbon Fiber Reinforced Plastic) laminate specimens are subjected to a tensile test using the UTM(Universal Testing Machine, AG-IS 100 kN) to estimate their mechanical properties in terms of the Hole machining impact evaluation. The FEM (Finite Elements Method) analysis method is applied and the material properties obtained from basic experiments such as the Tensile test, the compressive test, and the shear test. CFRP materials properties from a previous study, as well as a finite element analysis program for Hole machining CFRP was compared with the experiments.

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료의 가공기술에 관한 연구)

  • Lee Seok-Woo;Choi Heon-Jong;Yi Bong-Gu
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.245-252
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric md hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $Al_2O_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

Effect of Ultrasonic Vibration on Micro-EDM Channel (Micro-EDM 채널가공에서 초음파 가진의 영향)

  • Lim, Heesung;Hong, Minsung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.421-425
    • /
    • 2016
  • Micro-EDM is one of the recent fine-machining technologies. Micro-EDM is widely used in precision processes because products manufactured via EDM are free from workpiece hardness. However, the debris produced during the process cause many problems such as reduced precision of the process. The first solution of this problem involves using the milling hole process. Micro-EDM hole process involves an electrode moving rapidly in the vertical direction via a servo system to disperse debris. However, this process can cause reduced work efficiency owing to contact between the electrode and workpiece. In this study, ultrasonic vibration is added to micro-EDM channel machining. Ultrasonic vibration removes the debris during machining and enables precision machining. Consequently, a clean work environment for the subsequent processes is maintained.

Hand drum forms of STD-11 Die-hole in Wire-cut Electronic discharge Machining Conditions (STD-11 Die-hole 와이어 컷 방전가공시 가공조건에 따른 북현상 고찰)

  • 조규재
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.567-572
    • /
    • 2000
  • From the experimental study of W-EDM for alloyed steel, the characteristics such as Hand Drum Form and surface roughness have been observed and evaluated for various conditions. In square hole, the increase of IP as to made condition, the calculate high value of surface roughness. Also compare dimensionless square hole with circle hole' graph, In circle hole, if a value of surface roughness IP 6 in a side of circle it show a 0.4${\mu}{\textrm}{m}$ and in IP 8, 0.6${\mu}{\textrm}{m}$, in IP 10, 0.7${\mu}{\textrm}{m}$, in IP 12, 0.8${\mu}{\textrm}{m}$ higher than before. This figure show the surface roughness is higher than before, because a table move in either X-axis or Y-axis in square hole, on the contrary, in circle there table move in X-axis and Y-axis at the same time. hand drum form getting small when wire tension increase 1000gf to 1500gf, at the same working conditions. The smaller of off time, the maller of hand drum form in same condition and same wire tension. but if you compare square hole with circle hole' graph, hand drum form displayed in maintained term of working condision, on the contrary, in case of square hole variation of hand drum form is more increase than a grow of IP

  • PDF

A Study on the Performance of Cermet Reamer for Transmission Parts (트랜스미션 부품 전용 가공 Cermet Reamer의 성능 평가에 관한 연구)

  • Cho, Jun Hyun;Ha, Byeong Cheol;Lee, Jong Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.17-22
    • /
    • 2019
  • In this study, Cermet Reamers for planet carrier was manufactured and the machining characteristics were analyzed through processing experiment. Cermet reamer with ∅14, ∅15, ∅18, and ∅21mm was used and machining characteristics were compared and analyzed by observing tool wear, machining hole dimensions and surface roughness. In the flank wear of the tool, the result is less than 0.2mm, which is the target value for each tool size. The experimental results of the machining hole dimensions show the results of the process control range of 3/100 or less according to the size of the tool. Also, the surface roughness measurement result showed a value of less than $0.5{\mu}m$ in the process control range for each tool size. As a result of observing the experimental results of each ∅, the results satisfied the process standard in both the tool wear, the machining hole dimension and the surface roughness.