• Title/Summary/Keyword: Hole Machining

Search Result 261, Processing Time 0.025 seconds

Fabrication of Micro-Shapes Using EDM and Ultrasonic Machining (미세형상가공을 위한 방전ㆍ초음파 가공기술)

  • 주종남;김규만;김성윤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.20-27
    • /
    • 2000
  • 한국은행의 지식기반산업의 국민 경제적 역할 분석에 따르면, 91년부터 99년까지 지식기반산업의 연평균 성장률은 13.7%로 다른 산업의 4.1%보다 3배 이상 높은 것으로 조사되었다. 그중 항공기, 사무계산 및 회계용 기기, 의약품, 영상 음향 통신장비 등 첨단제조업은 이 기간 중 연평균 20.1% 성장을 기록하였다. 이와 같은 첨단제조업에서는 제품 내 부품의 정밀가공 기술이 필수적이다. 그 중에서도 미세 가공에 대한 관심은 지속적으로 증가하고 있는 추세이다.(중략)

  • PDF

A Study on the Development of a Specialized Prototype End-Effector for RDSs(Robotic Drilling Systems) (RDS(Robotic Drilling System) 구축을 위한 전용 End-Effector Prototype 개발에 관한 연구)

  • Kim, Tae-Hwa;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.132-141
    • /
    • 2013
  • Robotic Drilling Systems(RDSs) set the standard for the factory automation systems in aerospace manufacturing. With the benefits of cost effective drilling and predictive maintenance, RDSs can provide greater flexibility in the manufacturing process. The system can be easily adopted to manage very complex and time-consuming processes, such as automated fastening hole drilling processes of large aircraft sections, where it would be difficult accomplished by workers following teaching or conventional guided methods. However, in order to build an RDS based on a CAD model, the precise calibration of the Tool Center Point(TCP) must be performed in order to define the relationships between the fastening-hole target and the End Effector(EEF). Based on the kinematics principle, the robot manipulator requires a new method to correct the 3D errors between the CAD model of the reference coordinate system and the actual measurements. The system can be called as a successful system if following conditions can be met; a. seamless integration of the industrial robot controller and the IO Level communication, b. performing pre-defined drilling procedures automatically. This study focuses on implementing a new technology called iGPS into the fastening-hole-drilling process, which is a critical process in aircraft manufacturing. The proposed system exhibits better than 100-micron 3D accuracy under the predefined working space. Based on the proposed EEF fastening-hole machining process, the corresponding processes and programs are developed, and its feasibility is studied.

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

Characteristics of Micro EDM using Wire Electrical Discharge Grinding for Al2O3/CNTs Hybrid Materials (Al2O3/CNTs 하이브리드소재의 와이어 방전연삭을 이용한 마이크로 방전가공 특성)

  • Tak, Hyun-Seok;Kim, Jong-Hun;Lim, Han-Suk;Lee, Choon-Tae;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • Electrical discharge machining (EDM) is an attractive machining technique but it requires electrically conductive ceramic materials. In this study, Alumina matrix composites reinforced with CNTs were fabricated through CNT purification, mixing, compaction and spark plasma sintering (SPS) processes. $Al_2O_3$ nanocomposites with the different CNT concentrations were synthesized. The mechanical and electrical characteristics of $Al_2O_3$/CNTs composites were examined in order to apply the materials to the EDM process. In addition, micro-EDM using wire electrical discharge grinding (WEDG) was conducted under the various EDM parameters to investigate the machining characteristics of machined hole by Field Emission Scanning Electron Microscope (FE-SEM). The results show that $Al_2O_3$/CNTs 10%Vol. was more suitable than the other materials because high conductivity and large discharge energy caused violent sparks resulting in bad machining accuracy and surface quality.

The Evaluation of Wear Characteristics Depending on Components of Surface Treatment for Cemented Carbide Endmill (초경엔드밀 적용 표면처리 조성별 마모특성 영향 평가)

  • Yoon, Il Chae;Kim, Dong Bae;Youn, Guk Tae;Yoon, In Jun;Lee, Ji Hyung;Ko, Tae Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.513-519
    • /
    • 2014
  • For depth machining in die and mold, Electrical Discharge Machining (EDM) is used generally. To make deep hole and deep shape efficiently, cemented carbide endmill for depth machining is necessary. For this purpose, cemented carbide endmill was designed using design of experiment (DOE). To improve cutting performance, endmill was coated with multilayer surface treatment, TiAlCrSiN and TiAlCrN, for higher wear resistance. In order to evaluate the endmill, Transverse Rupture Strength (TRS) test was tried for investigating the relationship between surface treatment and strength in endmill body. Scratch test was also used for measuring adhesion force of each surface treatment. To evaluate hardness of surface treatment, Atomic Force Microscope (AFM) analysis was carried out. Wear test was executed for characteristics of each surface treatment in high temperature. Consequently, TiAlCrSiN was superior to the TiAlCrN coating in case of high temperature environment such as cutting.

A Study on the Machining Characteristics of SCM415 Steel with Small Deep Inner Diameter Holes Using CNC Automatic Lathes (CNC 자동선반을 이용한 SCM415강의 소형 깊은 내경홀 가공 특성 연구)

  • Choi, Chul-Woong;Kim, Jin-su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Small-scale production is increasing, and the manufacturing industry is gradually changing into a smart manufacturing industry. Therefore, research on securing optimal cutting conditions for factors affecting machining precision during cutting is very important. Therefore, the purpose of this study is to After machining the inner diameter hole of SCM415 steel with a cermet tool on a CNC automatic lathe, the surface roughness, dimensional accuracy, and dimensional straightness are measured according to the feed rate to analyze the machining characteristics and suggest optimal cutting conditions. The test material was cut using a cermet tool for secondary cutting after a round bar with a diameter of 20 mm was mounted on a CNC automatic lathe. The cutting length was fixed at 0.5 mm, and the cutting speed was fixed at 3200 rpm. When the feed rate was changed to 0.05, 0.1, and 0.15 mm/rev, the respective surface roughness during the 15th test was measured. Consequently, The lower the feed rate, the better is the surface roughness. In addition, the optimum cutting conditions for SCM415 steel were observed to be the most ideal cutting conditions than the condition of 0.05 mm/rev at a cutting speed of 3,200 rpm and a feed rate of 0.1 mm/rev.

Standardization of machining process for progressive press die (순차이송형 프레스 금형의 가공표준화)

  • Lee, S.M.;Lee, S.J.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.114-125
    • /
    • 1993
  • In the present study the newly developed CAD/CAM system is applied to the process of the molding design, machining for mini-sized and precise processive die, and the production of press-stamped parts. When the design of a die was completed by means of CAD, wire cut NC data were generated with the aid of a design drawing in the CAD system and then inputed into the wire cut machine, and with the aid of a hole chart which had been made for this purpose, all the data were classified into the categories of CNC milling, jig boring, jig grinding, and machine center, and then developing a program of generating NC data, errors in process were reduced and programming time was shortened. The program was developed by using Autolisp language which was built-in the CAD, and realizing the intergation of designing a die, generating and processing NC data directly by a designer, designing time and machinery processing time were shorted. And the traditionally required working time for design. NC program required 6 days of work becomes 4 days of work by using the developed CAD/CAM system so that the efficiency shows 150% of the reduction working time. The prpgram of the design of the automation a progressive die mold was developed in the PC-Class Autocad system, therefore development expense could be reduced, and the integration of the CAD/CAM of the progressive die mold with the standard DB being built could be realized.

  • PDF

A Study on the Measurements of Sub-surface Residual Stress in the Field of Linear Stress Gradient (선형구배 응력장에서 표층의 잔류응력 측정에 관한 연구)

  • 최병길;전상윤;이택순
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1632-1642
    • /
    • 1992
  • When a blind hole of small diameter is drilled in the field of residual stress, strain relieved around the hole is function of magnitude of stress, patterns of stress distribution and hole geometry of diameter and depth. Relieved strain coefficients can be calculated from FEM analysis of relieved strain and actual stress. These relieved strain coefficients make it possible to measure residual stress which vary along the depth in the subsurface of stressed material. In this study, the calibration tests of residual stress measurement are carried out by drilling a hole incrementally on the cantilever or on the tensile test bar. Residual stresses can be determined from measured strains around a shallow hole by application of power series method. For the sake of reliable measurement of residual stress, much efforts should be done to measure relieved strains and hole depth more accurately comparing with conventional procedures of gage subject to the external load. Otherwise linear equations converting strains into stresses may yield erratic residual stresses because of ill-conditions of linear equations. With accurate measurements of relieved strains, residual stress even if varying along the depth can be measured. It is also possible to measure residual stress in the thin film of material by drilling a shallow hole.

An Experimental Study on Micro Drilling Using Step Feed (스텝이송방식을 이용한 미세구멍가공에 관한 실험적 연구)

  • Han, J.U.;Won, J.S.;Jung, Y.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.46-53
    • /
    • 1996
  • Micro drilling is one of the most important machining types and its necessity becomes more and more increasing in the whole field of industry. Micro drilling, however, has few the case of practical application, because it requests high techniques : manufacturing micro drill, treating chip, producting precise hole shape and progressing machining effeciency. Micro drilling has a technical problem: drill breakage from the lack of drill rigdity and the interuption of chip. It is, therefore, essential to select the proper cutting conditions and the step fed for the method solving the lack of rigidity and the interruption of chip. Especially, step feed is very efficient to avoid the breakage of drill, but bring about reducing of cutting efficiency. The study on step feed must be requested more than the present in the near future. The purpose of this paper is to investigate experimentally about cutting conditions which affect on tools and round errors and to estimate about the effect of step feed as well as optimal step feed size to solve the breakage of drill.

  • PDF

Analysis of machining characteristics of thermogravimetric analysis and high-power density electron beam through the development of vaporized amplification sheets according to metal powder (Metal Powder에 따른 증기화 증폭 시트의 개발을 통한 열 중량 분석 및 고출력 전자빔의 가공 특성 분석)

  • Kim, Hyun-Jeong;Jung, Sung-Taek;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.56-62
    • /
    • 2020
  • An electron beam was used to mainly utilize for polishing, finishing, welding, a lithography process, etc. Due to the high technical level of difficulty of high-power density electron beam, it is difficult to secure related technologies. In this study, research was carried out to improve the machinability by developing the vaporized amplification sheets to realize the electron beam drilling technology. Their vaporized amplification sheets were analyzed by using the measurement of chemical and composition, which is such as TGA, SEM. We analyzed micro-hole processing using a microscope. Also, the thermal characteristics of vaporized amplification sheets are highly significant for applying to high-power density electron beam technique. So, we finished the vaporized amplification sheets according to the process conditions and analyzed it according to the machining conditions of the electron beam. It was confirmed that the effect on the experimental results differs depending on the influence of the metal powder contained in the developed material.