• Title/Summary/Keyword: Hole Diameter

Search Result 760, Processing Time 0.025 seconds

Intermittent Atomization Characteristics of Multi-Hole and Single-Hole Diesel Nozzle

  • Lee, Jeekuen;Kang, Shin-Jae;Park, Byungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1693-1701
    • /
    • 2002
  • The intermittent spray characteristics of a multi-hole and a single-hole diesel nozzle were experimentally investigated. The hole number of the multi-hole nozzle was 5, and the hole diameter of the 5-hole and the single-hole nozzle was the same as d$\_$n/=0.32 ㎜ with the constant hole length to diameter ratio(l$\_$n//d$\_$n/=2.81). The droplet diameters of the spray, including the time-resolved droplet diameter, SMD (Sauter mean diameter) and AMD (arithmetic mean diameter) , injected intermittently from the two nozzles into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer). Through the time-resolved evolutions of the droplet diameter, it was found that the structure of the multi-hole and the single-hole nozzle spray consisted of the three main parts : (a) the leading edge affected by surrounding air. and composed of small droplets; (b) the central part surrounded by the leading edge and mixing flow region and scarcely affected by the resistance of air, (c) the trailing edge formed by the passage of the central part. The SMD decreases gradually with the increase in the radial distance, and the constant value is obtained at the outer region of the radial distance (normalized by hole diameter) of 7-8 and 6 for the 5-hole and single-hole nozzle, respectively. The SMD along the centerline of the spray decrease shapely with the increase in the axial distance after showing the maximum value near the nozzle tip. The SMD remains the constant value near the axial distance(normalized by hole diameter) of 150 and 180 for the 5-hole and the single-hole nozzle, respectively.

Multi-hole RF CCP 방전에서 방전 주파수가 미치는 영향

  • Lee, Heon-Su;Lee, Yun-Seong;Seo, Sang-Hun;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.145-145
    • /
    • 2011
  • Recently, multi-hole electrode RF capacitively coupled plasma discharge is being used in the deposition of microcrystalline silicon for thin film solar cell to increase the speed of deposition. To make efficient multi-hole electrode RF capacitively coupled plasma discharge, the hole diameter is to be designed concerning the plasma parameters. In past studies, the relationship between plasma parameters such as pressures and gas species, and hole diameter for efficient plasma density enhancement is experimentally shown. In the presentation, the relationship between plasma deriving frequency and hole diameter for efficient multi-hole electrode RF capacitively coupled plasma discharge is shown. In usual capacitively coupled plasma discharge, plasma parameter, such as plasma density, plasma impedence and plasma temperature, change as frequency increases. Because of the change, the optimum hole diameter of the multi-hole electrode RF capacitively coupled plasma for high density plasma is thought to be modified when the plasma deriving frequency changes. To see the frequency effect on the multi-hole RF capacitively coupled plasma is discharged and one of its electrode is changed from a plane electrode to a variety of multi-hole electrodes with different hole diameters. The discharge is derived by RF power source with various frequency and the plasma parameter is measured with RF compensated single Langmuir probe. The shrinkage of the hole diameter for efficient discharge is observed as the plasma deriving frequency increases.

  • PDF

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (2) Comparison of Spray Uniformity and Atomization Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (2) 분무 균일도 및 미립화 특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.154-161
    • /
    • 2020
  • A single spray plume is the basic unit of the entire spray plume and is an important factor in understanding the spray characteristics. However, since the multi-hole GDI injector has a narrow spray angle, the superposition of the spray plumes occurs severely. Therefore, the spray uniformity and the spray atomization characteristics of a single spray plume were analyzed in this study using a single-hole GDI injector. Five single-hole GDI injectors with different nozzle hole diameters were used in the experiment. The uniformity of the spray was evaluated through the analysis of the spray pattern images. In addition, the atomization characteristics were compared using the diameter distribution of the spray droplets obtained using PDPA. As a result, the larger diameter of the nozzle hole, the less uniformity of the spray, and the injection pressure did not have a significant effect on the spray uniformity. It is judged that the surface roughness of the injector has a greater effect on spray uniformity than the diameter of the nozzle hole. Also, the size of the spray droplets increased sharply when the diameter of the nozzle hole was 230 ㎛.

A Study on the Wide Reach Nozzle of Sprayer(IV) (Characteristics of cap hole diameter and pressure for the medium range nozzle) (휴반용 분무기의 Nozzle에 관한 연구(IV) (중거리용 Nozzle예 있어서 구경과 압력의 특성))

  • 옹장우;이상우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3872-3877
    • /
    • 1975
  • This study was conducted to examine the effects of the change of cap hole diameter and pressure on the travelling distance and the sprayed particle size for the medium range nozzle. The results of this study are summarized as follows; 1) The effective travelling distance was about from 1 meter to 8 meters and centro-position of the travelling distance was about 3 or 5 meters. 2) Main effect of change of cap hole diameter for the travelling distance was a slight convex quadratic curve. 3) Main effect of change of pressure increased linearly, its increasing rate about 1.6 was large. 4) Sizes of sprayed particles were less than 250${\mu}$ generally and the sizes decreased according to the increasing of travelling distance. 5) Changes of diameter of sprayed particles by cap hole diameter increased in accordance with increasing of cap hole diameter. 6) Changes of diameter of sprayed particles by the groove depth of swirl plate was very slight.

  • PDF

Capacity of RC Concrete Column with Holes (Rc 유공 콘크리트 기둥의 내력에 관한 실험적 연구)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.92-95
    • /
    • 2006
  • This study is to find out how column with hole is behaved, compared to the normal one without hole. There might be existing buildings to make holes in the reinforced concrete column. Columns are made with commercially used compressive strength $240kg/cm^{2}$, air amount 5.0%, using re-bar of diameter D13 and D10 having yielding stress $4,000kg/cm^{2}$. The specimen were cured with temperature of $21{\pm}3^{\circ}C$. All specimens of five variables and all holes are geometrically considered and configurated. D3, D5 mean diameter 3cm and 5cm respectively. H1, H2 are the number of holes. Compressive pressure was forced in accordance with KS, following $0.6{\pm}0.4N/mm^{2}$ speed. Main re-bar's were strained with almost same shape through all the specimens. Hole diameter 5cm-having specimen showed cracking around hole. strains of back and front gauges of the specimen were showed similarly. Specimen having two holes in left and right from longitudinally axis resisted 7% less than the one having hole centrically from longitudinal axis. One hole having specimen with diameter 5cm resisted only 3% less than in case of 3cm diameter hole. Hole having in left and right from longitudinal axis will be less resistant than the case longitudinally arranged. Diameter 3cm hole showed less 10% capacity than normal one without hole. Capacity loss difference between diameter 3cm and 5cm showed almost none in case that they are arranged longitudinally.

On-Machine Measurement System Development of Hole Accuracy using Machine Vision (머신비젼을 이용한 구멍 정밀도의 기상측정시스템 개발)

  • Kim, Min-Ho;Kim, Tae-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.7-13
    • /
    • 2010
  • The integrity and accuracy of the drilling hole are decided by positional error, diameter error, the roundness, the straightness, the cylindericity, size of the burr, the surface roundness and others. Among these parameters, positional error and diameter error have the most important parameters. The diameter error has been widely studied, but there has been little research done about the positional error due to the difficulty of measuring it. The measurement of hole location and diameter would be performed by CMM(Coordinate Measurement Machine). However, the usage of CMM requires much time and cost. In order to overcome the difficulties, we have developed a hole location and diameter error measuring device using machine vision. The developed measurement device attached to a CNC machine can determine hole quality quickly and easily.

The Distribution of Boundaty Stresses around the Lightening Hole in a Triangular Bracket. (Bracket의 Lightening Hole 주변(周邊)에서의 응력분포(應力分布))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.3 no.1
    • /
    • pp.11-18
    • /
    • 1966
  • In a polarized light field, triangular plate bracket specimen of CR-39 with lightening hole were subjected to tension. The variables of the models used in the experiment were taken in the range of length-depth $ratio=0.583{\sim}1.715$, eccentricity of lightening hole from the geometrical center of $bracket=-1/4"{\sim}+1/4"$, and the lightening hole $diameter=1/2"{\sim}2"$. The isoclinics were drawn and from those the stress trajectories were constructed. Then the distributions of boundary stress around the lightening holes were determined from the isochromatic fringe pattern. The conclusions reached in this investigation are as follows: 1. Maximum stresses of the hole boundary are gradually increased when the diameter of the lightning hole increase. 2. Maximum stresses of the lightning hole boundary are decreased gradually when the eccentricity of the lightning hole from the geometrical center of the bracket to the farther side from the free end. 3. If the minimum distances from the free end of the brackets to the lightening hole boundaries are equal, the variation of the maximum stresses are in a small range for the change of lightening hole diameter and its location. 4. When the length-depth ratios are smaller than 0.8, the maximum stresses increase steeply. In the range of $0.8{\sim}1.2$ maximum stresses increase gradually and thereafter increase rapidly when the length-depth ratio of the bracket increase for the same diameter of a lightening hole.

  • PDF

Control of Taper Shape in Micro-Hole Machining by Micro-EDM (방전 가공을 이용한 미세 구멍 가공 시 발생하는 테이퍼 형상의 제어)

  • Kim Dong Jun;Yi Sang Min;Lee Young Soo;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.52-59
    • /
    • 2005
  • When a micro hole is machined by EDM with a cylindrical electrode, the hole diameter is different at the inlet and the outlet of the micro hole. The taper shape of the micro hole is caused by not only wear of the electrode but the eroded particles. The eroded particles cause secondary discharge during machining the micro hole. As a result, the diameter of the inlet becomes larger than that of the outlet. In this paper, a new method is proposed to reduce the difference in diameter between the inlet and the outlet of the hole. Observed was that the feed depth and machining time affect the formation of taper shape On this experimental basis, ultrasonic vibration was applied to reduce machining time, and capacitance was changed during machining to use the difference in discharging energy of different capacitances. Using the proposed method, a straight micro-hole was fabricated.

Evaluation of Withdrawal Resistance of Screw-Type Fasteners Depending on Lead-Hole Size, Grain Direction, Screw Size, Screw Type and Species

  • LEE, Hyung Woo;JANG, Sang Sik;KANG, Chun-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.181-190
    • /
    • 2021
  • Screw-type fasteners are widely used to make connections between wood members or between wood and steel connectors because they can tolerate the applied loads by withdrawal or shearing. In this study, we evaluated the withdrawal resistances of the screw-type fasteners and analyzed the effects of the lead-hole size, relative grain direction (tangential, radial, and cross-sections) of the wood member, screw diameter, screw type, and species. Two wood species, including domestic larch and imported spruce, and three screw-type fasteners, including domestic lag screws (diameters of 9.46, 7.79, and 6.27 mm), domestic tapping screw (diameter, 6.3 mm), and imported Sherpa screw (diameter, 8.0 mm) were used. To assess the effect of lead-hole size, the lead holes with diameters corresponding to 68.7%, 70.8%, and 74.0% of the shank diameter of the lag screw were predrilled. The lead hole corresponding to 74% of the shank diameter was selected for this study because the smaller lead holes required higher rotational force for installation, which may cause damage in the screw neck, although there was no significant difference in the withdrawal resistance depending on the lead-hole sizes applied in this study. The lag screws installed on the tangential and radial surfaces showed similar withdrawal resistances to each other, which were greater than those installed on the cross-sectional surface. As the lag screw diameter increased from 6.27 mm to 9.46 mm, the withdrawal resistance also increased proportionally. The withdrawal resistance of the tapping screw having a diameter of 6.3 mm was almost 1.6 times higher than that of the lag screw having a similar diameter of 6.27 mm, while that of Sherpa screw having a diameter of 8.0 mm was around 1.4 times higher than that of the lag screw having a similar diameter of 7.79 mm.

Measurement of the Shape in the Radioactive Area by Ultrasonic Wave Sensor

  • Park, Koon-Nam;Sim, Chuel-Muu;Park, Chang-Oong;Lee, Chang-Hee;Park, Jong-Hark
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.927-934
    • /
    • 2002
  • The HANARO ( High-flux Advanced Neutron Application Reactor) has been operated since 1995. The Cold Neutron (CN) hole was implanted in the reflector tank from the design stage. Before a vacuum chamber and a moderator cell for the cold neutron source are installed into the CN hole, it is necessary to measure exactly the size of the inside diameter and thickness of the CN hole to prevent the interference problem. Due to inaccessibility and high radiation field in the CN hole, a mechanical measurement method is not permitted. The immersed ultrasonic technique is considered as the best way to measure the thickness and the diameter of the CN hole. The 4-Axis manipulator was designed and fabricated for locating the ultrasonic sensors. The transducer of an ultrasonic sensor having 10 MHz frequency leads to high resolution as much as 0.03mm. The inside diameter and thickness of 550 points of the CN hole were measured using 2 channel ultrasonic sensors. The results show that the thickness and inside diameter of the CN hole is in the range of 3.3∼6.7mm and 156∼ 165mm, respectively. This data will be a good reference for the design of the cold neutron source facility.