• Title/Summary/Keyword: Hole Accuracy

Search Result 229, Processing Time 0.05 seconds

Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement (변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법)

  • Shin, Dong Il;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement

Effect of Hone Stone on Accuracy of Honing in 2-Cycle Engine Cylinder having Open Hole (열린 홀을 가진 2사이클 엔진실더의 호닝가공시 호닝의 정밀도에 미치는 혼스톤의 영향)

  • 장명진
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.143-149
    • /
    • 2000
  • Grinding technology in morden industry society is focusing on research and development for grinding stone and machin-ing parts for the purpose of high accuracy and high efficiency of products. But in order to equip the high technology and high accuracy of micro stone which is one of grinding stone a continuous effort on R& D is require. In this study the honing processing work of 2 cycle engine cylinder for motorcycle which has an open hole is carried out so as to investigate the boring and hone stone effects on accuracy of honing. As the experimental result of this study we could conclude that it is possible to secure good conditions of honing by controlling and keeping appropriate cycle-time in the stage of boring for the prior step of honing.

  • PDF

Effect of Hone stone on Accuracy of Honing in 2-Cycle engine Cylinder having Open Hole (열린 홀을 가진 2사이클 엔진실린더의 호닝가공에서 혼스톤이 호닝의 정밀도에 미치는 영향)

  • 한규택
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.326-331
    • /
    • 1999
  • Grinding technology in morden industry society is focusing on research & development for grinding stone and machining parts for the purpose of high accuracy and high efficiency of products. But, in order to equip the high technology and high accuracy of micro stone which is one of grinding stone, hardly and continuous effort on R&D is required.In this study, honing processing work of 2-cycle engine cylinder for motorcycle which has open hole is practiced so as to clear how borning that is prior step of honing and hone stone make an influence on accuracy of honing. As the result of analyzing the results of experiments, we came to conclusion that we can secure good conditions of honing by controlling and keeping appropriate cycle-time in the stage of boring of prior step of honing.

  • PDF

A Study on Wear of Aluminum Alloy Guide Hole in SSD Tester (SSD 테스터의 알루미늄 합금 Guide Hole의 마모에 관한 연구)

  • Ham, Eung jin;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.19-24
    • /
    • 2022
  • The purpose of this research is to determine the hardness of guide hole. A guide pin and a guide hole of SSD(Solid State Drive) tester used to mount SSD in a fixed position accurately. The guide pin and guide hole are worn by friction due to repeated operation, and the wear is concentrated on the guide hole made of weak material rather than the guide pin made of relatively strong material. Because of that reason, it is often overdesigned in the design stage because it can lose its function. If the guide hole is made soft, the manufacturing cost will decrease, but the accuracy will decrease due to wear caused by repeated friction. If the guide hole is manufactured excessively, the manufacturing process becomes complicated and the manufacturing cost increases. It is essential to design a guide hole, but since there is no standard or verified data that can be referenced, it is difficult to design. Experimental device which guides in the same way as the SSD tester is used for this research, and three types of anodizing state are experimented for different hardness. Also, weight of COK(Change over Kit) were analyzed by measuring the wear amount and state of the guide hole according to the number of repeated attachment and detachment.

Design of Two-way Image Acquisition System for 25\μm Tool Alignment in the Micro Hole Punching (25\μm 홀 펀칭 공구 정렬을 위한 광학 시스템 설계)

  • 주병윤;임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.190-204
    • /
    • 2004
  • The objective of this study is to develop a highly accurate micro tool alignment system applicable to the micro machining technology. In a specific application such as micro hole punching, radial clearance between micro tools is order of a few micron. Under this micron scale tool clearance, accuracy of tool alignment is very important for ensuring hole quality. In the present study, a two-way image acquisition system was developed, which can produce overlapped image of both micro tools that face each other, and applied to the tool alignment in the micro punching. Also, to meet alignment accuracy of tools within $1\mu\textrm{m}$, the cross correlation image processing algorithm was employed. With this system, $25\mu\textrm{m}$ punching tools with $1\mu\textrm{m}$ radial clearance could be accurately aligned.

AJM을 이용한 HDM에 의한 잔류응력 계측에 관한 연구 1

  • 이택순
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.37-42
    • /
    • 1988
  • The Hole Drilling Method(HDM) is widely used to measure residual stresses in the welded structures. The purpose of this study is to evaluate the accuracy fo measuring residual stresses when drilling the hole by Air-abrasive Jet machine(AJM). Simulated residual stresses wre introduced by applying known stresses to steel bars. These known streses were then compared with measured stresses relaxed from hole drilling. the obtained results are summarized as follows; 1) It was possible to obtain well defined holes with the nozzle designed for this study. 2) If the hole shape is not cylindrical, critical may occur. 3) In the uniaxial strain field, the measurement error of the maximum principal stress was within .+-.10 percent. The orientation angle of the maximum principal stress was within 8.deg. from the given directioin. 4) meausrements were made varying hole depths. Little or no change of stresses occurs since holse were drilled more than the depth of the 0.6 times diameter. 5) The air-abrasive jet machining for drilling holse does not cause appreciable apparent stresses which si critical to measure residual stresses.

  • PDF

Application of Image Processing Technique to Improve Production Efficiency of Fine Pitch Hole Based on Laser (레이저 미세피치 홀 가공의 생산효율성 향상을 위한 영상처리 측정 기법 적용)

  • Pyo, C.R.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.320-324
    • /
    • 2010
  • Multi-Layer Ceramic Circuit(MLCC) in the face of thousands of fine pitch multi hole is processed. However, the fine pitch multi hole has a size of only a few micrometers. Therefore, in order to curtail the measurement time and reduce error, the image processing measurement method is required. So, we proposed an image processing measurement algorithm which is required to accurately measure the fine pitch multi hole. The proposed algorithm gets image of the fine pitch multi hole, extracts object from the image by morphological process, and extracts the parameters of its position and feature by edge detecting process. In addition, we have used the sub-pixel algorithm to improve accuracy. As a result, the proposed algorithm shows 97% test-retest measurement reliability within 2 ${\mu}m$. We found that the algorithm was wellsuited for measuring the fine pitch multi hole.

Process Optimization for Productivity Improvement during EDM machining of a micro-hole (마이크로 홀의 EDM 가공 시 생산성 향상을 위한 가공공정의 최적화)

  • Kwon, Won-Tae;Kim, Yeong-Chu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.556-562
    • /
    • 2012
  • Micro electrical discharge machining (${\mu}EDM$) has been used for non-conventional material removal. One drawback of ${\mu}EDM$ is low productivity. In this study, we tried to find the optimal machining conditions to manufacture the micro hole with an optimal machining time without loss of accuracy. Taguchi method was used to figure out the relation between machining parameters and characteristics of the process. It was found that the electrode wear, the entrance and exit clearance gave a significant effect on the diameter of the micro hole when the diameter of the electrode was identical. Grey relational analysis was used to determine the optimal machining condition for minimum machining time without loss of accuracy. The obtained optimal machining condition was the input voltage of 80V, the capacitance of 680pF, the resistance of $500{\Omega}$, the feed rate of $1.5{\mu}m$/s and the spindle speed of 2900rpm. The machining time was reduced to 48% without loss of accuracy under the optimal machining condition.

Prediction of fracture in hub-hole expansion process using new ductile fracture criterion (새로운 연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측)

  • Ko Y. K.;Lee J. S.;Kim H. K.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.163-166
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. The hub-hole expansion process is different from conventional forming processes or hole flanging processes from the view-point of its deformation mode and forming of a thick plate. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed fur finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio is compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

  • PDF