• Title/Summary/Keyword: Holding furnace

Search Result 30, Processing Time 0.035 seconds

Grain Refinement and Mechanical Properties of AM60 Mg Alloy by $CaCN_2$ Addition (Ca$CN_2$ 첨가에 의한 AM60 마그네슘 합금의 결정립 미세화 및 기계적 성질)

  • Eom, Jeong-Pil;Jeong, Seong-Kyu;Lim, Su-Geun;Shin, Hee-Taek;Jeong, Deuk-Soo
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.383-388
    • /
    • 1998
  • Effects of $CaCN_2$ addition on the grain refinement in the AM60 magnesium ingots were investigated. The effects of the $CaCN_2$ are estimated with different inoculation temperatures, inoculation contents, and holding time to find out the optimum condition. AM60 alloy was melted in the low carbon steel crucible by cylindrical electric furnace under an argon atmosphere. The melting and casting apparatus is specially designed for magnesium alloys. The grain size of AM60 magnesium alloy decreased significantly with an increase in $CaCN_2$ content and, at 0.8 wt% $CaCN_2$ or more, grain size becomes constant at about $85 {\mu}m$. The optimum condition was obtained in the 0.8 wt% $CaCN_2$ for holding molten metal of 30 min. at the temperature of $710^{\circ}C$. The tensile properties of AM60 magnesium alloys were improved due to grain refinement by addition of $CaCN_2$. In the optimum condition, the yield strength, tensile strength and elongation were ${\sigma}_{0.2}=107 MPa$, ${\sigma}_{T.S}=234 MPa$ and e=14.2%. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$. The strain-hardening exponent, n and strength coefficient, K obtained in the 0.8 wt% $CaCN_2$ added AM 60 magnesium alloy were n=0.21 and K=390 MPa.

  • PDF

Characteristics of Brazed Joint of Sintered Bronze/steel Using Ag-Cu-Zn Type Filler Materials (Ag-Cu-Zn-Cd 계 용가재를 이용한 Bronze 소결체/강의 브레이징 접합부 특성 평가)

  • 이정훈;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.79-89
    • /
    • 1999
  • The study was carried out to examine in more detail metallurgical and mechanical properties of brazed joints of diamond cutting wheel. In this work, shank(mild steel) and sintered bronze-base tips were brazed with three different filler materials(W-40, BAgl and BAg3S). The machine used in this work was a high frequency induction brazing equipment. The joint thickness, porosities and microstructure of brazed joints with brazing variables(brazing temperature, holding time) were evaluated with OLM, SEM, EDS and XRD. Bending(torque) test was also performed to evaluate strength of brazed joints. Further wetting test was performed in a vacuum furnace in order to evaluate the wettability of filler metals on base metals9shank and tips). The brazing temperature had a strong influence on the joint strength and the optimum brazing temperature range was about $700~850^{\circ}C$ for the bronze/steel combinations. The strength of the brazed joint was found to be influenced by the three factors : degree of reaction region, porosity content, joint thickness. The reaction region was formed in the bronze-base tip adjacent to the joint. The reaction region resulted in a bad influence on the strength due to the formation of Cu5.6Sn, CuZn4, $\beta(CuZn)$ and CdAg, etc. Porosities increased as brazing variables(brazing temperature, holding time) increased, and the brazed joints with porosities of less than about 3-5% had an optimum strength for the bronze-base tip.

  • PDF

Microstructural Evolution in the Unidirectional Heat Treatment of Cu-35%Sn Alloys (Cu-35%Sn 합금의 일방향 열처리에서 출현하는 미세조직)

  • Choi, K.J.;Jee, T.G.;Park, J.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.320-328
    • /
    • 2003
  • A specimen of Cu-35%Sn alloy has been subjected to the unidirectional heat treatment in an attempt to examine the evolution of microstructures under varying thermal conditions. The specimen was cast in the form of a cylinder 10 mm in diameter and 200 mm in length, which was then installed in the temperature gradient field established inside a vertical tube furnace. The furnace temperature was adjusted to make the upper part at $750^{\circ}C$ and bottom end part at $300^{\circ}C$ of the specimen. The experiment was terminated by dropping it into water after the 30 minutes holding at given temperature. By the rapid cooling, the high temperature phases, ${\gamma}$ and ${\zeta}$, were retained at ambient temperature with some of ${\gamma}$ phase transformed to ${\varepsilon}$ phase, especially at the grain boundaries of ${\gamma}$ phase. The presence of ${\varepsilon}$ phase was found to determine the nature of phase transformations of the ${\zeta}$ phase undergoes upon cooling. In the close area of the ${\varepsilon}$ phase, ${\varepsilon}$ phase grew separately out of ${\zeta}$, and adds to the preexisting ${\varepsilon}$ whereas in areas away from ${\varepsilon}$, both ${\delta}$ and ${\varepsilon}$ grew simultaneously out of ${\zeta}$, and formed a lamella eutectoid structure. The transformation to ${\delta}$ was found to occur only in slow cooling. The hardness on each phase showed that the retained phases, ${\gamma}$ and ${\zeta}$, could be plastically deformed without brittle fracture while the phases, ${\varepsilon}$ and ${\delta}$, were too brittle to be deformed.

The Study on Fabrication and Sound Absorption Properties of Al-Zn-Mg-Cu Alloy Foams (Al-Zn-Mg-Cu 발포합금 제조 및 흡음특성에 관한 연구)

  • Jeong, Seung-Reung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.31 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • Metallic foam has been known as a functional material which can be used for absorption properties of energy and sound. The unique characteristics of Al foam of mechanical, acoustic, thermal properties depend on density, cell size distribution and cell size, and these characteristics expected to apply industry field. Al-Zn-Mg-Cu alloy foams was fabricated by following process; firstly melting the Al alloy, thickening process of addition of Ca granule to increased of viscosity, foaming process of addition of titanium hydride powder to make the pores, holding in the furnace to form of cooling down to the room temperature. Metal foams with various porosity level were manufactured by change the foaming temperature. Compressive strength of the Al alloy foams was 2 times higher at 88% porosity and 1.2 times higher at 92% porosity than pure Al foams. It's sound and vibration absorption coefficient were higher than pure Al foams and with increasing porosity.

Crack behavior of Surface Strengthened Zirconia-Alumina Composite During Indentation

  • Balakrishnan, A.;Chu, M.C.;Panigrahi, B.B.;Choi, Je-Woo;Kim, Taik-Nam;Park, J.K.;Cho, S.J.
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.743-746
    • /
    • 2006
  • ZTA tubes were prepared by centrifugal casting and sintered at $1600^{\circ}C$ for 2 hrs. The ZTA tubes were machined into specimens of $3{\times}4{\times}40$ mm. Molten Soda lime glass (SLG) was penetrated into the surface of ZTA at an optimized condition of $1500^{\circ}C$ for the holding time of 5 h and furnace cooled. The extra glass on the surface was removed using a resin bonded diamond wheel. The glass penetrated samples were tested for their flexural strength using four point bend test. Vickers Indentation cracks were made on the glass penetrated surface at different loads of 9.8 N, 49 N, 98 N and 196 N. The residual compression on the surface enhanced the flexural strength and crack arrest behaviour remarkably. This was attributed to the thermoelastic mismatch between the glass and ZTA matrix during cooling.

Reduction Behavior of Self-Reducing Pellets of Chromite and Si Sludge with and without Carbon

  • Jung, Woo-Gwang;Hossain, Sakib Tanvir;Kim, Jong-Ho;Chang, Young-Chul
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.592-602
    • /
    • 2019
  • Feasibility is investigated for reduction of chromium ore by Si sludge with mixed silicothermic and carbothermic reaction. The reduction behavior of chromium ore using Si sludge is investigated precisely to determine the effects of carbon addition, reaction time, and reaction temperature. The pellets are dropped into the furnace after temperature stabilized. As the amount of C addition increases, the amounts of CO and $CO_2$ gas generation increase. After the dropping of the pellets, the pellets are heated and the reaction starts at about 1,573 K or higher. The pellets maintain their shape until 10 min after the drop, and then melted. As the holding time increased, the size of the reduced metal particles increased. The chromium ore is rapidly reduced by the Si sludge, and the slag penetrated into the chromium ore and reduction progressed inside. As the reduction temperature increased, the reaction initiation time is shortened and the reaction fraction of the reduction reaction increased. As the reaction temperature increased, agglomeration of reduced ferrochrome metal is promoted.

Analysis on the Heat Exchange Efficiency of Kraft Recovery Boiler by Nose Arch Structure Using CFD (CFD를 활용한 크래프트 회수보일러 내부 노즈 아치 구조에 따른 열교환 효율 분석)

  • Jang, Yongho;Park, Hyundo;Lim, Kyung pil;Park, Hansin;Kim, Junghwan;Cho, Hyungtae
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.149-156
    • /
    • 2021
  • A kraft recovery boiler produces steam for power generation by the combustion of black liquor from the kraft pulping process. Since saturated steam became superheated in a superheater above the furnace, it is important to increase the heat exchange efficiency for the superheated steam production and power generation. A nose arch at the bottom of the superheater is important for blocking radiation from the furnace which causes corrosion of the superheater. But the nose arch is the main reason for creating a recirculation region and then decreasing the heat exchange efficiency by holding cold flue gas after the heat transfer to saturated steam. In this study, the size of recirculation region and the temperature of flue gas at the outlet were analyzed by the nose arch structure using computational fluid dynamics (CFD). As a result, when the nose arch angle changed from 106.5° (case 1) to 150° (case4), the recirculation region of flue gas decreased and the heat exchange efficiency between the flue gas and the steam increased by 10.3%.

Study on the Evaluation of Fracture Toughness at Welded Zone for the Pipe Steel by $CO_2$ Gas Welding ($CO_2$가스 배관용접부의 파괴인성평가에 관한 연구)

  • Na, Ui-Gyun;Yu, Hyo-Seon;O, Seok-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1817-1825
    • /
    • 2000
  • The purpose of this study is to examine the fracture toughness of the welded pipe from the viewpoint of FATT for the S38 and S42 steels used widely as the pipe material. Post weld heat treatment(PW HT) was carried out like following conditions: temperature of 67$0^{\circ}C$, I hour of holding time and cooling in furnace. Fracture toughness was obtained by measuring the crack opening displacement(COD) of the notched specimens over the range of temperature from -14$0^{\circ}C$ to -$25^{\circ}C$. Hardness values at fusion line near around were the highest and the microstructures at welded zone were coarsened. Regardless of the pipe materials, COD and temperature curves of the as-welds were moved toward higher temperature compared with those of the parents. However, COD and temperature curves of the PWHT specimens were positioned at lower temperature compared with those of the as-welds. The more heat input causes to decrease the COD values at the constant temperature. It was verified through the recrystallization treatment that PWHT was attributed to move toward lower temperature region considerably due to the improved plastic deformation at the same applied COD value of 0.3mm and softening effect. In case of the weldment of S38 steel, cleavage fracture was observed at -105$^{\circ}C$ unlike the structural steels, in which brittle fracture mode was generally shown at - 196$^{\circ}C$.

Measurement of Vapor Pressure of Molten ZnCl2 and FeCl2 by the Transpiration Method (유동법에 의한 용융 ZnCl2 및 FeCl2의 증기압 측정)

  • Lee, Woo-Sang;Kim, Won-Yong;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.111-116
    • /
    • 2010
  • Chloride-based fluxes such as NaCl-KCl are used in the refining of Al melt. The vapor pressure of the chloride is one of the fundamental pieces of information required for such processes, and is generally high at elevated temperatures. In order to measure the vapor pressure for chlorides, the apparatus for the transpiration method was assembled in the present study. The vapor pressure of $ZnCl_2$ and $FeCl_2$, which is related with the process of aluminum refining and the recovery of useful elements from iron and steel industry by-products, was also measured. In the measurement of vapor pressure by the transpiration method, the powder of $ZnCl_2$ or $FeCl_2$ in a alumina boat was loaded in the uniform zone of the furnace with a stream of Ar. The weight loss of $ZnCl_2$ and $FeCl_2$ after holding was measured by changing the flow rate of Ar gas (10 sccm -230 sccm), and the partial pressures of $ZnCl_2$ and $FeCl_2$ were calculated. The partial pressures within a certain range were found to be independent of the flow rate of Ar at different temperatures. The vapor pressures were measured in the temperature range of 758-901K for $ZnCl_2$ and 963-983K for $FeCl_2$. The measured results agreed well with those in the literature.

Characterization of crack self-healing of silicon carbide by hot press sintering (열간가압소결법으로 제조한 탄화규소의 균열자기치유 특성)

  • Kim, Seong-Hoon;Kim, Kyung-Hun;Dow, Hwan-Soo;Park, Joo-Seok;Kim, Kyung-Ja;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.62-66
    • /
    • 2016
  • In this study, it was investigated that characteristic of crack-self-healing of hot-pressed SiC. SiC ceramics was sintered with $Al_2O_3$ and $Y_2O_3$ sintering additive by hot press. Sintering was performed in hot-press furnace in flowing argon (Ar), holding for 3 hr under $1950^{\circ}C$ and 50 MPa. The sintered SiC was machined into 3-point bending strength specimen of $3{\times}4{\times}40mm$, and introduced pre-crack by Vickers indentation at 49.6 N. Specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), 3-point bending strength after heat treatment at $1200{\sim}1400^{\circ}C$ for 1~10 hr. The best crack-self-healing ability was achieved 770 MPa 3-point bending strength by heat treatment at $1300^{\circ}C$ for 5 hr.