• Title/Summary/Keyword: Holding Time

Search Result 1,043, Processing Time 0.033 seconds

Effects of Heat Treatment Conditions of FeC2O4·2H2O on the Formation of Fe3O4-δ (FeC2O4·2H2O의 열처리 조건이 Fe3O4-δ 형성에 미치는 영향)

  • Oh, Kyoung-Hwan;Park, Won-Shik;Rhee, Sang-In;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.620-625
    • /
    • 2012
  • A general synthetic method to make $Fe_3O_{4-{\delta}}$ (activated magnetite) is the reduction of $Fe_3O_4$ by $H_2$ atmosphere. However, this process has an explosion risk. Therefore, we studied the process of synthesis of $Fe_3O_{4-{\delta}}$ depending on heat-treatment conditions using $FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. The thermal decomposition characteristics of $FeC_2O_4{\cdot}2H_2O$ and the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ were analyzed with TG/DTA in Ar atmosphere. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method using $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$. The concentration of the solution was 0.1 M and the equivalent ratio was 1.0. ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed to $H_2O$ and $FeC_2O$4 from $150^{\circ}C$ to $200^{\circ}C$. $FeC_2O4$ was decomposed to CO, $CO_2$, and $Fe_3O_4$ from $200^{\circ}C$ to $250^{\circ}C$. Single phase $Fe_3O_4$ was formed by the decomposition of ${\beta}-FeC_2O_4{\cdot}2H_2O$ in Ar atmosphere. However, $Fe_3C$, Fe and $Fe_4N$ were formed as minor phases when ${\beta}-FeC_2O_4{\cdot}2H_2O$ was decomposed in $N_2$ atmosphere. Then, $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by decomposion of CO. The reduction of $Fe_3O_4$ to $Fe_3O_{4-{\delta}}$ progressed from $320^{\circ}C$ to $400^{\circ}C$; the reaction was exothermic. The degree of exothermal reaction was varied with heat treatment temperature, heating rate, Ar flow rate, and holding time. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was greatly influenced by the heat treatment temperature and the heating rate. However, Ar flow rate and holding time had a minor effect on ${\delta}$-value.

Ideological Background of Paving Patterns of Classical Gardens in Suzhou, China (중국 쑤저우 고전원림 포장문양의 사상적 배경 고찰)

  • Niu, Zi-Chi;Ahn, Gye-Bog
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.3
    • /
    • pp.58-65
    • /
    • 2015
  • Compared to pavement of Chinese palace gardens, those of private gardens in south part of the Yangtze River(長江) in China shows variety of patterns. In order to figure out what causes the difference in paving pattern, this article focuses on the traditional Chinese ideologies during the all time. An analysis on 'Classical Gardens of Suzhou', which has been designated as UNESCO World Heritage, was used to determine how ideologies have influence on paving pattern of Classical Gardens. As a result, various Chinese ideologies such as Nature worship, Totemism, Confucianism, Taoism, Buddhism, and Folk Culture were found in paving patterns of the private gardens. Pattern of sun in the Retreat & Reflection Garden(Toisawon) is an example of Nature worship among primitive beliefs of ancient China. Phoenix pattern of the Couple's Retreat Garden(Ouyuan, Liuyuan) reflects Totemistic beliefs. Confucianism is the underlying philosophy of Eight Square pattern, Six Square pattern, and Cross Square pattern. These patterns were mainly used to pave large area and easily found in many gardens. Patterns reflect Taoism are "Wufu holding life" pattern(the Five blessing holding life, 五福捧壽), Flat peach pattern, and Alluding Eight Immortals pattern. Paving patterns related to Buddhism are patterns of 'Eight treasures' and Endless knot pattern appears most frequently since it expresses concept of reincarnation well. Paving patterns shows folk culture and beliefs of the time in China are bat, butterfly, dragonfly, frog, carp, and coin(ingot).

Development and Challenges for the Group Counseling Program in Elementary School (초등학교 집단상담 프로그램 개발의 문제점과 과제)

  • Ahn, Ie-Hwan
    • The Korean Journal of Elementary Counseling
    • /
    • v.10 no.1
    • /
    • pp.57-76
    • /
    • 2011
  • Group counseling in elementary school is very unique in many respects due to the fact that is targets young people from the aspects of realizing educational goals and solving problems. Because it targets children who are undergoing development process, group counseling of the preventive nature is required even more. The reality, however, is that the group counseling in elementary school is carried out during the "left-over" time such as the time allocated for extracurricular activities. Worse yet, if there the homeroom teachers are not willing, then even this is not carried out. Moreover, method used for group counseling is simply re-configuration or modification of the consultation method used for adults regardless of the fact that it is necessary to develop diverse group counseling programs due to the characteristics of the children. To improve these problems, this research paper suggests the basic frame that this type of program needs, and held extensive discussions with sixteen teachers who were pursuing their master's degree for holding group counseling in elementary schools. As a result, consensus was developed that research of demand, contents configuration, organization, operation and evaluation are crucial for developing group counseling program in elementary school. And the results are to be used as important back-up material for the development of new program by holding detailed discussions on the above mentioned five topics. Furthermore, this paper presents the direction for the development of program going forth by evaluating the group counseling program in elementary school conducted in Korea to this day, and mentions the challenges that lie ahead.

  • PDF

Optimization of preform mold injection molding process for hemispheric plastic structure fabrication (반구형 플라스틱 구조체 성형을 위한 프리폼 몰드 사출성형공정 최적화)

  • Park, Jeong-Yeon;Ko, Young-Bae;Kim, Dong-Earn;Ha, Seok-Jae;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.30-36
    • /
    • 2019
  • Traditional cell culture(2-dimensional) is the method that provide a nutrient and environment on a flat surface to cultivate cells into a single layer. Since the cell characteristics of 2D culture method is different from the characteristics of the cells cultured in the body, attempts to cultivate the cells in an environment similar to the body environment are actively proceeding in the industry, academy, and research institutes. In this study, we will develop a technology to fabricate micro-structures capable of culturing cells on surfaces with various curvatures, surface shapes, and characteristics. In order to fabricate the hemispheric plastic structure(thickness $50{\mu}m$), plastic preform mold (hereinafter as "preform mold") corresponding to the hemisphere was first prepared by injection molding in order to fabricate a two - layer structure to be combined with a flat plastic film. Then, thermoplastic polymer dissolved in an organic solvent was solidified on a preform mold. As a preliminary study, we proposed injection molding conditions that can minimize X/Y/Z axis deflection value. The effects of the following conditions on the preform mold were analyzed through injection molding CAE, [(1) coolant inlet temperature, (2) injection time, (3) packing pressure, (4) volume-pressure (V/P). As a result, the injection molding process conditions (cooling water inlet temperature, injection time, holding pressure condition (V / P conversion point and holding pressure size)) which can minimize the deformation amount of the preform mold were derived through CAE without applying the experimental design method. Also, the derived injection molding process conditions were applied during actual injection molding and the degree of deformation of the formed preform mold was compared with the analysis results. It is expected that plastic film having various shapes in addition to hemispherical shape using the preform mold produced through this study will be useful for the molding preform molding technology and cast molding technology.

Hazard Analysis of Packaged Meals (Dosirak) During Delivery (도시락 유통과정의 미생물적 품질관리를 위한 연구)

  • Shin, Sung-Won;Rew, Kyung;Kwak, Tong-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.3
    • /
    • pp.85-98
    • /
    • 1990
  • Microbiological quality of packaged meals (Dosirak) was assessed in three operations under the both conditions of actual food processing and simulated time-temperature. Time and temperature data indicated that all the phases after cooking were critical for microbiological quality control. Microbiological test results by simulated time-temperature conditions revealed that microbiological quality of packaged meals decreased as the storage time and temperature increase. Delivery practices without refrigeration in summer and hot-holding below $60^{\circ}C$ in supermarket were crucial in microbiological quality control.

  • PDF

A Study on the Optimum Reheating Profess of A356 Alloy in Semi-Solid Forming (반용융 성형에서 A356합금의 최적 재가열 과정에 대한 연구)

  • Yoon, Jae-Min;Park, Joon-Hong;Kim, Young-Ho;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.114-125
    • /
    • 2002
  • As semi-solid forging (SSF) is compared with conventional easting such as gravity die-easting and squeeze casting, the product without inner defects can be obtained from semi-solid forming and globular microstructure as well. Generally speaking. SSF consists of reheating, forging, ejecting precesses. In the reheating process, the materials are heated up to the temperature between the solidus and liquidus line at which the materials exists in the form of liquid-solid mixture. The process variables such as reheating time, reheating temperature, reheating holding time, and induction heating power have much effect on the quality of the reheated billets. It is difficult to consider all the variables at the same time when predicting the quality. In this paper, Taguchi method, regression analysis and neural network were applied to analyze the relationship between processing conditions and solid fraction. A356 alloy was used for the present study, and the learning data were extracted by the reheating experiments. Results by neural network were on good agreement with those by experiment. Polynominal regression analysis was formulated by using the test data from neural network. Optimum processing condition was calculated to minimize the grain size, solid fraction standard deviation, otherwise, to maximize the specimen temperature average. In this time, discussion is liven about reheating process of row material and results are presented with regard to accurate process variables for proper solid fraction, specimen temperature and grain size.

Characterization of resistance spot welded Al5052/DP590 dissimilar materials and processing optimization (저항점용접된 Al5052/DP590 이종소재의 특성평가 및 공정의 최적화)

  • Jo, Beom-Ji;Kim, Ji-Sun;Yoo, Hyo-Sang;Kim, In-Ju;Lee, Seong-Hui;Kim, Young-Gon
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.56-61
    • /
    • 2015
  • IRW(Inverter Resistance Welding) process and DSW(Delta-spot welding) process for dissimilar materials of DP590 and Al5052 were performed to evaluate the welding quality and mechanical properties. IRW experiment was carried out with changing the welding current. The other welding parameters such as pressure force, weld time, squeezing time and holding time were fixed. On the anther hand, DSW experiment was performed using the process tape at welding current of 11.5kA. The other conditions were same as IRW conditions. The various testes such as shear tensile strength, nugget diameters, EDS, SEM and cross-sectional observation for weld zone was performed. As a result, IMC(Inter Metallic Compound) thickness at 11.5kA was thinner than those of 9.5kA and 10.5kA conditions. In addition, thined IMC layer was observed when high electric current apply to the materials(DP590 and Al5052) in a short time throught dissimilar resistance spot welding controling welding conditions. The relationship between the thickeness of IMC and current intensity was after discussed.

Properties of a SiC-$ZrB_2$ Composite by condition of SPS on/off Pulse Time (SPS on/off Pulse Time 조건에 따른 SiC-$ZrB_2$ 복합체 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Lee, Hee-Seung;Park, Jin-Hyoung;Kim, In-Yong;Kim, Cheol-Ho;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.314-314
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 40vol.% of Zirconium Diboride(hereafter, $ZrB_2$) powders with Silicon Carbide(hereafter, SiC) matrix. TheSiC+40vol.%$ZrB_2$ composites were manufactured through Spark Plasma Sintering(hereafter, SPS) under argon atmosphere, uniaxial pressure of 50MPa, heating rate of $100^{\circ}C$/min, sintering temperature of $1,500^{\circ}C$ and holding time of 5min. But one on/off pulse sequence(one pulse time: 2.78ms) is 10:9(hereafter, SZ10), and the other is 48:8(hereafter, SZ48). The physical and mechanical properties of the SZ12 and SZ48 were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffraction(hereafter, XRD) analysis. The apparent porosity of the SZ10 and SZ48 composites were 9.7455 and 12.2766%, respectively. The SZ10 composite, 593.87MPa, had higher flexural strength than the SZ48 composite, 324.78MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had Positive Temperature Coefficient Resistance(hereafter, PTCR).

  • PDF

Effects of Low-temperature Blanching on Physical Properties of Chestnut Powder (Low-temperature Blanching 처리가 밤가루의 물리적 특성에 미치는 영향)

  • Lim, Jeong-Ho;Kim, Jun-Han;Seo, Young-Ho;Moon, Kwang-Deog
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1216-1220
    • /
    • 1999
  • The effects of low-temperature blanching on the physical properties of chestnut powder were studied. Chestnuts were blanched in water for 15, 30 and 60 min., each at three temperatures viz. $45^{\circ}C,\;55^{\circ}C$ and $65^{\circ}C$. The particle size of chestnut powder was prepared smaller than 60 mesh$(250\;{\mu}m)$. Higher blanching time and temperature increased water binding capacity(WBC) of chestnut powder. Water soluble index(WSI) was the highest for chestnuts blanched at $65^{\circ}C$ for 30 min. As with water binding capacity(WBC), swelling power of chestnut powder increased with increasing blanching time and temperature but solubility showed an reduction by increasing blanching temperature. In Brabender amylographic examination, peak viscosity of chestnut powder showed great change, but the gelatinization temperature showed no significant differences by blanching conditions.

  • PDF

Effects of Strain on Performance, and Age at Slaughter and Duration of Post-chilling Aging on Meat Quality Traits of Broiler

  • Abdullah, Abdullah Y.;Muwalla, Marwan M.;Maharmeh, Haitham O.;Matarneh, Sulaiman K.;Ishmais, Majdi A. Abu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1645-1656
    • /
    • 2010
  • This study was conducted to investigate the effects of strain on broiler performance, and age at slaughter and postchilling (PC) aging time on meat quality traits. A total of 500 one-day-old chicks (250 Hubbard classic and 250 Lohman) were reared under commercial conditions. Half of the broiler birds from each strain were slaughtered at 32 days and the other half at 42 days old. At each processing day, 168 carcasses were randomly selected (84 Hubbard and 84 Lohman) and divided into groups of 28 carcasses within each strain, and aged for 0, 4 and 24 h after chilling. Average weekly body weight was comparable between strains. Feed conversion ratio was higher (p<0.05) for the Hubbard strain during the second and third week of age. Initial carcass pH was significantly (p<0.05) affected by age where younger birds (32-d-old) had lower pH values than older (41-d-old) birds. Breast temperature was higher (p<0.001) for Lohman than Hubbard at 0, 2 and 4 h of PC. Younger birds had a lower breast temperature (p<0.001) at all measured times of PC. Thaw loss, cook loss and water holding capacity were not significantly affected by strain, age or aging time. Lohman strain had more tender meat (p<0.05) than Hubbard strain, and tenderness was improved with the increase of broiler age and aging time. Meats from Hubbard were lighter and less red than those from Lohman strain where younger birds had darker color. In conclusion, strain, age at slaughter and PC aging duration are critical to breast meat quality characteristics, and 4 h of aging are required before deboning in order to obtain more tender fillets.