• Title/Summary/Keyword: Hoist system

Search Result 55, Processing Time 0.02 seconds

Sliding-Mode Control of Container Cranes (컨테이너크레인 시스템의 슬라이딩모드제어)

  • Lee Suk-Jae;Park Hahn;Hong Keum-Shik
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.747-753
    • /
    • 2005
  • In this paper, as an anti-sway control strategy of container cranes, we investigate a variable structure control in which the moving load follows a given trajectory, whereas both the trolley and hoist controllers achieve their positioning problems. It is crucial, in an automated container terminal, that collisions should be avoided during the transference of containers from one place to another. It is also necessary, in the case of a quay crane, to select suitable loading and unloading trajectories of containers, so that possible collisions with surrounding obstacles are avoided. After a brief introduction of the mathematical model, a robust control scheme (i.e., a second-order sliding mode control that guarantees a fast and precise transference and a suppression of the resulted swing) is presented. Despite model uncertainties and unmodeled actuators dynamics, the swing suppression from the given trajectory is obtained by constraining the system motion on suitable sliding surfaces, which include both the desired path and the swing angle. The proposed controller has been tested with a laboratory-size pilot crane. Experimental results are provided.

The Performance Evaluation of a Hydraulic and Magnetic Clamp Device Manufactured to Transport with Safety the Curved Steel Plate Required for Shipbuilding

  • Moon, Byung Young;Park, Kwang Bok;Hong, Young Jun;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.527-535
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was attempted to realize a magnetic clamp crane system that uses 8 simultaneously actuating individual hydraulic cylinders. Through this approach, a Sr type of ferritic permanent magnet ($SrO{\cdot}6Fe_2O_3$), not the previously employed electro-magnet, was utilized for the purpose of lifting and transporting the heavy weighted and oversized curved steel plates used for manufacturing the ships. This study is aimed at manufacturing and developing the hydraulic magnetic clamp prototype, which is composed of three main parts - the base frame, cylinder joint, and magnet joint - in order to safely transport such curved steel plates. Furthermore, this research was pursued to conduct a performance evaluation as to the prototype manufacture and acquire the planned quantity value and the development purpose items. The most significant item for a performance evaluation was estimated for the magnetic adhesive force (G) and in this process, a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc) was utilized. In addition, other relevant items such as hoist tension (kN), transportation time (sec), and the applied load (Kgf) exerted on the hydraulic cylinders were also evaluated in order to acquire the optimum quantity value. As a result of the evaluation, the relevant device turned out to be suitable for safely transporting the curved steel plates.

Performance Evaluation of Hydraulic and Magnetic Clamp Crane for Transporting Curved Steel Plate for Shipbuilding, with Permanent Magnet Applied (영구자석을 적용한 선박용 곡면 철판 이송용 유압식 마그네틱 클램프 이송장치의 성능평가에 대한 고찰)

  • Moon, Byung Young;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.322-330
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was developed to realize a magnetic clamp crane system by simultaneously actuating eight individual hydraulic cylinders. In this approach, an Sr-type of ferritic permanent magnet (SrO· 6Fe2O3), rather than the previous electromagnet, was utilized for the purpose of lifting and transporting the large curved steel plates used for manufacturing ships. This study had the goal of developing and manufacturing a hydraulic, magnetic clamp prototype composed of three main parts, including the base frame, cylinder joint, and magnet joint, in order to safely transport curved steel plates. Furthermore, this research included a performance evaluation of the manufactured prototype and acquired the purposed quantity value in the performance test. The most significant item, the magnetic adhesive force (G), was evaluated in a performance test, which utilized a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc). In particular, relevant items such as the hoist tension (kN), transportation time (s), and applied load (Kgf) on the hydraulic cylinders were also evaluated in order to determine the optimum values.

A Study on Development of Remote Crane Wire Rope Flaws Detection Systems (원격 크레인 와이어 로프 결함 탐지 시스템 개발에 관한 연구)

  • Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Wire ropes are used in a myriad of various industrial applications such as elevator, mine hoist, construction machinery, lift, and suspension bridge. Especially, the wire rope of crane is important component to container transfer. If it happens wire rope failures during the operation, it may lead to safety accident, economic loss by productivity decline and so on. To solve this problem, we developed remote wire rope fault detecting system, and this system is consisted of 3 parts that portable fault detecting part, signal processing part and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. So, we applied to discrete wavelet transform to extract a signal from noisy data. It is verified that the detecting system by de-noising has good efficiency for inspecting faults of wire ropes in service. As a result, by developing this system, container terminal could reduce expense because of extension fo wire ropes exchange period and could competitive power. Also, this system is possible to apply in several field such as elevator, lift and so on.

A Quantitative Risk Analysis of Related to Tower Crane Using the FMEA (타워크레인의 정량적 위험성 평가가법에 관한 연구(FMEA 기법 위주))

  • Shim, Kyu-Hyung;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.34-39
    • /
    • 2010
  • The purpose of this study is to suggest objective evaluation model as a plan to utilize as opportunity in establishing judgment standard of mutual inspection criteria and to upgrade inspection ability by reviewing and analyzing level of danger and importance in advance based on inspection results of inspection institutions regarding tower cranes used in construction fields. Tower crane is a mechanical device transporting construction supplies and heavy materials to places over 20~150M high from the ground for the period ranging from a short time of 2~3 months to two years after being installed in construction sites in vicinity of buildings or structures and is an important facility indispensable for construction sites. However, since use period after installation is short and professional technical ability of technicians working on-site about of tower crane is poor, systematic and quantitative safety management is not carried out As a part of researches on procedure of RBI(Risk Based Inspection) possible to apply to Knowledge Based System based on knowledge and experiences of experts as well as to tower cranes for solving these problems, quantitative RPN(Risk Priority Number) was applied to RPN utilizing technique of FMEA(Failure Mode and Effect Analyses). When general RBI 80/20 Rule was applied parts with high level of risks were found out as wire rope, hoist up/down safety device, reduction gear, and etc. However, since there are still many insufficient parts as risk analyses of tower crane were not established, it is necessary for experts with sufficient experiences and knowledge to supplement active RBI techniques and continuous researches on tower cranes by sharing and setting up data base of important information with this study as a starting point.