We introduce the empirical model decomposition (EMD) to decompose a time series into a set of components in the time-frequency domain. By using EMD, we also extract cycle and trend components from major Korean macroeconomic indices and forecast the indices with the components combined. In order to evaluate their efficiencies, we investigate volatility, autocorrelation, persistence, Granger causality, nonstationarity, and forecasting performance. They are then compared with those by Hodrick-Prescott filter which is the most commonly used method.
It has been more than four years since the outbreak of global financial crisis. However, the world economy continues to be challenged with new crisis such as the European debt crisis and the fiscal cliff issue of the U.S. The global economic environment remains fragile and prone to further disappointment, although the balance of risks is now less skewed to the downside than it has been in recent years. It's no wonder that maritime business will be bearish since the global business affects the maritime business directly as well as indirectly. This paper, hence, aims to predict the Baltic Dry Index representing the shipping business using the ARIMA-type models and Hodrick-Prescott filtering technique. The monthly data cover the period January 2000 through January 2013. The out-of-sample forecasting performance is measured by three summary statistics: root mean squared percent error, mean absolute percent error and mean percent error. These forecasting performances are also compared with those of the random walk model. This study shows that the ARIMA models including Intervention-ARIMA have lower rmse than random walk model. This means that it's appropriate to forecast BDI using the ARIMA models. This paper predicts that the shipping market will be more bearish in 2013 than the year 2012. These pessimistic ex-ante forecasts are supported by the Hodrick-Prescott filtering technique.
The purpose of the study is to predict the shipping business during the period of 2011 using the ARIMA-type models. This include the ARIMA and Intervention-ARIMA models. The multivariate cause-effect econometric model is not employed for not assuring a higher degree of forecasting accuracy than the univariate variable model. Such a cause-effect econometric model also fails in adjusting itself for the post-sample. This article introduces the four ARIMA models and six Intervention-ARIMA models. The monthly data cover the period January 2000 through October 2010. The out-of-sample forecasting performance is compared between the ARIMA-type models and the random walk model. Forecasting performance is measured by three summary statistics: root mean squared percent error, mean absolute percent error and mean percent error. The root mean squared percent errors of all the ARIMA-type models are somewhat higher than normally expected. Furthermore, the random walk model outperforms all the ARIMA-type models. This reveals that the BDI is just a random walk phenomenon and it's meaningless to predict the BDI using various econometric techniques. The ARIMA-type models show that the shipping market is expected to be bearish in 2011. These pessimistic ex-ante forecasts are supported by the Hodrick-Prescott filtering technique.
In much the same way as the US Lehman crisis of 2008-2009 severely impacted the European economy through financial market dislocation, a European banking crisis would materially impact the US economy through a generalized increase in global risk aversion. A deepening of the European crisis could very well derail the US economic recovery and have a harmful impact on the Asian economies. This kind of vicious circle could be a bad news to the shipping companies. The purpose of the study is to predict the Baltic Dry Index representing the shipping business during the period of 2012 using the ARIMA-type models. This include the ARIMA and Intervention-ARIMA models. This article introduces the four ARIMA models and six Intervention-ARIMA models. The monthly data cover the period January 2000 through October 2011. The out-of-sample forecasting performance is also calculated. Forecasting performance is measured by three summary statistics: root mean squared percent error, mean absolute percent error and mean percent error. The root mean squared percent errors, however, are somewhat higher than normally expected. This reveals that it is very difficult to predict the BDI The ARIMA-type models show that the shipping market will be bearish in 2012. These pessimistic ex-ante forecasts are supported by the Hodrick-Prescott filtering technique.
Journal of the Korean Operations Research and Management Science Society
/
v.41
no.3
/
pp.59-74
/
2016
Electricity sales are directly measured from individual consumers, which could minimize the time gap between data collection and public announcement. Furthermore, industrial electricity sales are highly linked with production and output. Therefore, industrial electricity consumption can be used to track production and output in real time. By using the high-frequency data of industrial electricity sales, this study develops the daily electricity business index (DEBI) to capture the daily economic status. The steps used to formulate DEBI are as follows: (1)selection of the explanatory variables and period, (2) amendment of the seasonal adjustment to eliminate daily temperature and effective day effects, (3) estimation of the weighted value via variables by using PCA, (4) calculation of DEBI and commencement of validation tests. Our empirical analysis and the Hodrick-Prescott filter analysis show that DEBI is highly related to existing economic indices.
Communications for Statistical Applications and Methods
/
v.30
no.2
/
pp.149-162
/
2023
The ℓ1-trend filtering method is one of the most widely used methods for extracting underlying trends from noisy observations. Contrary to the Hodrick-Prescott filtering, the ℓ1-trend filtering gives piecewise linear trends. One of the advantages of the ℓ1-trend filtering is that it can be used for identifying change points in piecewise linear trends. However, since the ℓ1-trend filtering employs total variation as a penalty term, estimated piecewise linear trends tend to be biased. In this study, we demonstrate the biasedness of the ℓ1-trend filtering in trend level estimation and propose a two-stage bias-reduction procedure. The newly suggested estimator is based on the estimated change points of the ℓ1-trend filtering. Numerical examples illustrate that the proposed method yields less biased estimates for piecewise linear trends.
Purpose - A variety of indicators are used for the diagnosis of economic situation. However, most indicators explain the past economic situation because of the time difference between the measurement and announcement. This study aims to argue for the resurrection of an idea: electricity demand can be used as an indicator of economic activity. In addition, this study made an endeavor to develop a new Real Business Index(RBI) which could quickly represent the real economic condition based on the sales statistics of industrial and public electricity. Research design, data, and methodology - In this study monthly sales of industrial and public electricity from 2000 to 2015 was investigated to analyze the relationship between the economic condition and the amount of electricity consumption and to develop a new Real Business Index. To formulate the Index, this study followed next three steps. First, we decided the explanatory variables, period, and collected data. Second, after calculating the monthly changes for each variable, standardization and estimating the weighted value were conducted. Third, the computation of RBI finalized the development of empirical model. The principal component analysis was used to evaluate the weighted contribution ratio among 3 sectors and 17 data. Hodrick-Prescott filter analysis was used to verify the robustness of out model. Results - The empirical results are as follows. First, compatibility of the predictability between the new RBI and the existing monthly cycle of coincident composite index was extremely high. Second, two indexes had a high correlation of 0.7156. In addition, Hodrick-Prescott filter analysis demonstrated that two indexed also had accompany relationship. Third, when the changes of two indexes were compared, they were found that the times when the highest and the lowest point happened were similar, which suggested that it is possible to use the new RBI index as a complementing indicator in a sense that the RBI can explain the economic condition almost in real time. Conclusion - A new economic index which can explain the economic condition needs to be developed well and rapidly in a sense that it is useful to determine accurately the current economic condition to establish economic policy and corporate strategy. The salse of electricity has a close relationship with economic conditions because electricity is utilized as a main resource of industrial production. Furthermore, the result of the sales of electricity can be gathered almost in real time. This study applied the econometrics model to the statistics of the sales of industrial and public electricity. In conclusion, the new RBI index was highly related with the existing monthly economic indexes. In addition, the comparison between the RBI index and other indexes demonstrated that the direction of the economic change and the times when the highest and lowest points had happened were almost the same. Therefore, this RBI index can become the supplementary indicator of the official indicators published by Korean Bank or the statistics Korea.
This paper aims at predicting the BDI from Jan. to Dec. 2010 using such econometric techniues of the univariate time series as stochastic ARIMA-type models and Hodrick-Prescott filtering technique. The multivariate cause-effect econometric model is not employed for not assuring a higher degree of forecasting accuracy than the univariate variable model. Such a cause-effect econometric model also fails in adjusting itself for the post-sample. This article introduces the two ARIMA models and five Intervention-ARIMA models. The monthly data cover the period January 2000 through December 2009. The out-of-sample forecasting performance is compared between the ARIMA-type models and the random walk model. Forecasting performance is measured by three summary statistics: root mean squared error (RMSE), mean absolute error (MAE) and mean error (ME). The RMSE and MAE indicate that the ARIMA-type models outperform the random walk model And the mean errors for all models are small in magnitude relative to the MAE's, indicating that all models don't have a tendency of overpredicting or underpredicting systematically in forecasting. The pessimistic ex-ante forecasts are expected to be 2,820 at the end of 2010 compared with the optimistic forecasts of 4,230.
Text indicators are increasingly valuable in economic forecasting, but are often hindered by noise and high dimensionality. This study aims to explore post-processing techniques, specifically noise filtering and dimensionality reduction, to normalize text indicators and enhance their utility through empirical analysis. Predictive target variables for the empirical analysis include monthly leading index cyclical variations, BSI (business survey index) All industry sales performance, BSI All industry sales outlook, as well as quarterly real GDP SA (seasonally adjusted) growth rate and real GDP YoY (year-on-year) growth rate. This study explores the Hodrick and Prescott filter, which is widely used in econometrics for noise filtering, and employs sufficient dimension reduction, a nonparametric dimensionality reduction methodology, in conjunction with unstructured text data. The analysis results reveal that noise filtering of text indicators significantly improves predictive accuracy for both monthly and quarterly variables, particularly when the dataset is large. Moreover, this study demonstrated that applying dimensionality reduction further enhances predictive performance. These findings imply that post-processing techniques, such as noise filtering and dimensionality reduction, are crucial for enhancing the utility of text indicators and can contribute to improving the accuracy of economic forecasts.
Purpose - This paper investigates how business cycle impacts on corporate credit spreads since global financial crisis. Furthermore, it tests how the impact changes by the phase of the cycle. Design/methodology/approach - This study collected dataset from Barclays Global Aggregate Bond Index through the Bloomberg. It conducted multi-regression analysis by projecting business cycle using Hodrick-Prescott filtering and various cyclical variables, while ran dynamic analysis of 5-variable Vector Error Correction Model to confirm the robustness of the test. Findings - First, it proves to be statistically significant that corporate credit spreads have moved countercyclicaly since the crisis. Second, It indicates that the corporate credit spread's countercyclicality to the macroeconomic changes works symmetrically by the phase of the cycle. Third, the VECM supports that business cycle's impact on the spreads maintains more sustainably than other explanatory variable does in the model. Research implications or Originality - It becomes more appealing to accurately measure the real economic impact on corporate credit spreads as the interaction between credit and business cycle deepens. The economic impact on the spreads works symmetrically by boom and bust, which implies that the market stress could impact as another negative driver during the bust. Finally, the business cycle's sustainable impact on the spreads supports the fact that the economic recovery is the key driver for the resilience of credit cycle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.