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Abstract
The `1-trend filtering method is one of the most widely used methods for extracting underlying trends from

noisy observations. Contrary to the Hodrick-Prescott filtering, the `1-trend filtering gives piecewise linear trends.
One of the advantages of the `1-trend filtering is that it can be used for identifying change points in piecewise
linear trends. However, since the `1-trend filtering employs total variation as a penalty term, estimated piecewise
linear trends tend to be biased. In this study, we demonstrate the biasedness of the `1-trend filtering in trend level
estimation and propose a two-stage bias-reduction procedure. The newly suggested estimator is based on the
estimated change points of the `1-trend filtering. Numerical examples illustrate that the proposed method yields
less biased estimates for piecewise linear trends.
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1. Introduction

One of the main interests in sequential data analysis is to extract trends from temporary and unpre-
dictable noises. Suppose that observations yi (i = 1, 2, . . . , n) can be expressed as an additive model

yi = θi + εi, (1.1)

where θi indicates the trend level at the ith time and εi represents the corresponding random noise
satisfying E[εi] = 0 and Cov(εi, ε j) = 0 where i , j. We further assume that random noises εis follow
a centered Gaussian distribution with the variance σ2.

Regularization methods are frequently used to estimate underlying trends θi (i = 1, 2, . . . , n) from
noisy observations. The H-P (Hodrick-Prescott) filtering (Hodrick and Prescott, 1997) is one of the
famous regularization methods for trend filtering. The H-P filtering extracts trend estimates by solving
the following regularization problem

θ̂
HP

(λ) = arg min
θ∈Rn

1
2

n∑
i=1

(yi − θi)2 + λ

n−1∑
i=2

(θi−1 − 2θi + θi+1)2

 , (1.2)
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where λ ≥ 0. Since θi − θi−1 can be regarded as the slope between the ith and (i − 1)th points,
θi−1 − 2θi + θi+1 in the objective function (1.2) is equal to the difference between two neighboring
slopes θi − θi−1 and θi+1 − θi. Therefore, a smaller λ induces more drastic changes in slopes while a
larger λ yields gradual changes.

Consider a piecewise linear trend model satisfying the equation

θi+1 − θi = θi − θi−1

for i = 2, . . . , n − 1 except for a few change points j1, j2, . . . , jJ . Here, the number of change points
J is relatively small compared to the number of observations n. Since the H-P filtering employs the
squared `2-norm as a penalty term, the neighboring slopes of the H-P filtered estimates cannot be
exactly equal to each other. Therefore, the H-P filtering is inadequate for finding a piecewise linear
solution.

Instead of the `2-penalty term in the H-P filtering, the `1-trend filtering (Kim et al., 2009) employs
`1-penalty term as

θ̂
L1

(λ) = arg min
θ∈Rn

1
2

n∑
i=1

(yi − θi)2 + λ

n−1∑
i=2

|θi−1 − 2θi + θi+1|

 , (1.3)

and implements sparsity in slope changes. The `1-trend filtering is widely used for various appli-
cations such as image denoising (Selvin et al., 2016) and economics (Yamada and Jin, 2013). In
addition, there are many studies for properties and possible extensions of the `1-trend filtering (Gun-
tuboyina et al., 2020; Rojas and Wahlberg, 2015; Tibshirani, 2014; Yu et al., 2022).

However, the `1-trend filtering is a shrinkage estimator and is prone to be biased in estimating trend
levels. In this paper, we assume a piecewise linear model having a relatively small number of changes
in slopes. Under this assumption, we demonstrate that the `1-trend filtered estimates are biased and
suggest a bias-reduction procedure. Based on the change points obtained by `1-trend filtering, the
proposed bias-reduced trend estimator yields better estimates of the trend level.

This article is composed as follows. In Section 2, we show that the `1-trend filter is biased for
trend level estimation. As a remedy, we propose a bias-reduced estimator for a piecewise linear trend
in Section 3. In Section 4, we numerically illustrate that the proposed estimator outperforms the `1-
trend filter in trend level estimation. Finally, in Section 5, we wrap up with a summary and discussion
of possible extension.

2. Biasedness of the `1-trend filtering

The `1-trend filtered estimator θ̂L1
i is biased in a sense that there exists some points satisfying

E
[
θ̂L1

i

]
, θi = E

[
yi
]
.

For an observation vector y = (y1, y2, . . . , yn)ᵀ, an underlying trend vector θ = (θ1, θ2, . . . , θn)ᵀ and the
(n − 2) × n matrix D defined as

D =


−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −1 2 −1

 ,
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the optimization problem (1.3) can be re-expressed in a matrix-vector representation as

minimize
θ∈Rn

{
1
2
‖y − θ‖22 + λ ‖Dθ‖1

}
, (2.1)

where ‖y − θ‖22 =
∑n

i=1(yi − θi)2 and ‖Dθ‖1 =
∑n−1

i=2 |θi−1 − 2θi + θi+1|. The solution of (2.1) is given as

θ̂λ = y − Dᵀûλ, (2.2)

where elements of the vector ûλ = (û2, û3, . . . , ûn−1) are defined as

ûi ∈


{+λ} , if (Dθ̂λ)i > 0,

{−λ} , if (Dθ̂λ)i < 0,

[−λ,+λ] , if (Dθ̂λ)i = 0,

(2.3)

where (Dθ̂λ)i = −θ̂i−1 + 2θ̂i − θ̂i+1. In addition, for the boundary set Bλ = {i : (Dθ̂λ)i , 0} and the
corresponding sign vector sBλ , ûλ are given as

ûλ,Bλ = λ sBλ ,

ûλ,Bc
λ

=
(
DBc

λ

(
DBc

λ

)ᵀ)−1
DBc

λ

(
yBλ − λDBλ

ᵀsBλ
)
,

where DA and sA indicate a submatrix of the matrix D and a subvector of the vector s corresponding
to the index set A. One can refer to Tibshirani and Taylor (2011) for more details. From the equation

E
[
θ̂λ | Bλ

]
= E

[
y − Dᵀûλ | Bλ

]
= E

[
y | Bλ

]
− E [Dᵀûλ | Bλ] = E

[
y | Bλ

]
− DᵀE [ûλ | Bλ] ,

if the `1-trend filtered estimates were unbiased, the equation

E
[
ûλ,2 | Bλ

]
= E

[
ûλ,3 | Bλ

]
= · · · = E

[
ûλ,n−1 | Bλ

]
should hold. However, if the boundary set Bλ is nonempty,

E
[
ûλ,i | Bλ

]
= λ or E

[
ûλ,i | Bλ

]
= −λ

implies that all the `1-trend filtered estimates are local maximum or minimum. Since this result is
implausible, we can conclude that the `1-trend filter is a biased estimator for trend level estimation.

We introduce a new interpretation to understand the biasedness of the `1-trend filter. To do so, we
represent the `1-trend filter via piecewise linear formula. Suppose that a block partition Bλ consists
of blocks B0 = [1, j1), B1 = [ j1, j2), . . . , BJ = [ jJ , n] with change points j1, j2, . . . , jJ . Here, the block
partitions and change points depend on the tuning parameter λ. For notational convenience, we denote
j0 = 1 and jJ+1 = n + 1. For the points in the interval Bk = [ jk, jk+1), the `1-trend filtered estimates θ̂i

has a common slope b̂k as

b̂k = θ̂ jk+1 − θ̂ jk = θ̂ jk+2 − θ̂ jk+1 = · · · = θ̂ jk+1 − θ̂ jk+1−1.
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Hence, for i ∈ Bk = [ jk, jk+1), the `1-trend filtered estimates can be represented as

θ̂i = âk + b̂ki

for an intercept âk. In addition, since the two neighboring line segments in blocks Bk and Bk−1 are
connected at the boundary point jk, we have âk−1 + b̂k−1 jk = âk + b̂k jk and

(âk − âk−1) +
(
b̂k − b̂k−1

)
jk = 0

for each jk (k = 1, 2, . . . , J).
With this representation, the objective function in (2.1) can be re-expressed as

Q (a,b) =
1
2

n∑
i=1

(yi − θi)2 + λ

n−1∑
i=2

|θi−1 − 2θi + θi+1|

=
1
2

J∑
k=0

∑
i∈Bk

(yi − ak − bki)2 + λ

J∑
k=1

|bk − bk−1| , (2.4)

where J is the number of change points. Given a block partition Bλ, vectors of parameters a =

(a0, a1, . . . , aJ) and b = (b0, b1, . . . , bJ) can be found as the minimizers of the objective function (2.4).
â and b̂, the minimizers of the objective function Q(a,b), are given as the solutions of the 2(J + 1)
equations

∂Q (a,b)
∂ak

=

jk+1−1∑
i= jk

(ak + bki − yi) = 0, (2.5)

∂Q (a,b)
∂bk

=


∑ j1−1

i=1 i (a0 + b0i − yi) + λ sgn (b0 − b1) = 0 if k = 0,∑ jk+1−1
i= jk

i (ak + bki − yi) + λ
(
sgn(bk − bk−1) + sgn(bk − bk+1)

)
= 0 if k = 1, . . . , J − 1,∑n

i= jJ
i (aJ + bJi − yi) + λ

(
sgn (bJ − bJ−1)

)
= 0 if k = J

(2.6)

for k = 0, 1, . . . , J where sgn(x) = sign(x) if x , 0 and sgn(x) ∈ [−1, 1] if x = 0. Comparing these
equations with the normal equations of the ordinary least squares, the difference can be found in the
Equation (2.6) where sgn(bk − bk−1) = sgn(bk − bk+1) , 0.

In the case of sgn(bk − bk−1) = sgn(bk − bk+1) = 1, i.e., when the slope of the kth interval is larger
than those of the neighboring intervals, the normal Equations (2.5) and (2.6) can be re-expressed as

âk + b̂k x̄k − ȳk = 0,

nkâk x̄k + b̂k sxx,k − sxy,k + 2λ = 0,

where nk = jk − jk−1, x̄k =
∑ jk+1−1

i= jk
i/nk, ȳk =

∑ jk+1−1
i= jk

yi/nk, sxx,k =
∑ jk+1−1

i= jk
i2 and sxy,k =

∑ jk+1−1
i= jk

iyi.
Therefore, the slope of the kth interval is given as

b̂k =
sxy,k − nk x̄kȳk − 2λ

sxx,k − nk x̄2
k

,
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and b̂k gets smaller for a larger λ. Similarly, for the interval satisfying sgn(b̂k−b̂k−1) = sgn(b̂k−b̂k+1) =

−1, slope b̂k gets larger for increasing λ as in the equation

b̂k =
sxy,k − nk x̄kȳk + 2λ

sxx,k − nk x̄2
k

.

From these results, we can conclude that the slope estimates are biased for non-zero regularization
parameter λ. However, from the normal Equation (2.5), we have

yi − ȳk = b̂k (i − x̄k) ,

and at the center of the line segment (x̄k, ȳk), the estimate is unbiased.

3. Bias-reduced trend estimator

Considering the nature of regularization methods, the biasedness of the `1-trend filtering estimator is
not surprising. In the `1-trend filtering estimator, biases are due to the Equation (2.6) which contain
differentiated penalty terms. Thus, one can consider replacing the Equation (2.6) to obtain bias-
reduced estimates. We propose a bias-reduction procedure based on the `1-trend filtered estimates
of change points.===== However, since two neighboring line segments should be connected at a
change point, the proposed trend estimator cannot be entirely bias-free.

3.1. The proposed estimator

The proposed procedure utilizes the change points set Ĵ(λ) of the `1-trend filtered estimates and the
Equation (2.5). The Equation (2.5) can be expressed as

âk + b̂k

∑ jk+1−1
i= jk

i

jk − jk−1
−

∑ jk+1−1
i= jk

yi

jk − jk−1
= âk + b̂k x̄k − ȳk = 0 (k = 0, 1, . . . , J) .

Therefore, each line segment given by the proposed procedure passes through the point (x̄k, ȳk).
For bias reduction, one can consider the equations obtained by removing the differentiated penalty

term from the Equation (2.6) as

jk+1−1∑
i= jk

i (ah + bhi − yi) = 0 (k = 0, 1, . . . , J) .

However, the resulting solutions are not guaranteed to be connected at each change point. Thus, we
propose bias-reduced trend estimator obtained by minimizing the objective functions

J∑
k=0

∑
i∈Bk

(ak + bki − yi)2 (3.1)

subject to

(ak − ak−1) + (bk − bk−1) jk = 0, (3.2)
ak + bk x̄k − ȳk = 0 (3.3)

for k = 0, 1, . . . , J. The additional requirement (3.2) is necessary for the connectedness of the esti-
mates while Equation (3.3) is equivalent to (2.5).
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3.2. Estimation

The optimization problem for the proposed method can be easily solved. Since the midpoint of each
line segment is fixed as (x̄k, ȳk), if another point on the line segment is specified, the entire line segment
can be completely determined. Therefore, the left and right end points of the line segment of the kth

block, Bk, say ( jk, vk) and ( jk+1, vk+1), satisfying

x̄k =
jk + jk+1

2
and ȳk =

vk + vk+1

2

can be determined. Consequently, the starting point of the kth block Bk can be found as

jk = 2x̄k − jk+1 and vk = 2ȳk − vk+1

and similarly the ending point of the kth block, (uk+1, vk+1), can be identified. In this sequential pro-
cedure, the entire estimates can be determined if any one point on the piecewise linear estimates is
specified.

Therefore, we can think of the objective function (3.1) as a function of v0, where v0 is the y-
coordinate of the starting point of the first block, (u0, v0) = (1, v0) = (1, θ̂1). Let f (i|v0,B) be a
piecewise linear trend estimate given θ̂1 = v0 and the `1-trend filtered change points estimate B. We
represent the optimization problem as

minimize
v0

L (v0 | B) ,

where L (v0 | B) =

n∑
i=1

{yi − f (i | v0,B)}2. (3.4)

Since the objective function (3.4) is quadratic in v0, we can find the numerical solution easily.

4. Numerical illustration

To examine the effectiveness of the proposed bias-reduction procedure, we consider the following
four scenarios of length 50 (i = 1, 2, . . . , 50) for the piecewise linear structures containing one to four
change points.

1. Scenario 1 : 2. Scenario 2 :

θ∗i =

 −i if i = 1, . . . , 25,

i − 50 if i = 26, . . . , 50.
θ∗i =


−i if i = 1, . . . , 12,

i − 24 if i = 13, . . . , 38,

−i + 52 if i = 39, . . . , 50.

3. Scenario 3 : 4. Scenario 4 :

θ∗i =


−i if i = 1, . . . , 12,

i − 24 if i = 13, . . . , 25,

−i + 26 if i = 26, . . . , 38,

i − 50 if i = 39, . . . , 50.

θ∗i =



−i if i = 1, . . . , 10,

i − 20 if i = 11, . . . , 20,

−i + 20 if i = 21, . . . , 30,

i − 40 if i = 31, . . . , 40,

−i + 40 if i = 41, . . . , 50.
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Figure 1: Underlying piecewise linear trends (grey solid line) and observations (blue dots) for εi ∼ N(0, 1).
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Figure 2: `1-trend filtered estimates (left panel) and bias (right panel) for scenario 1.

For the above four mean structures, noise levels σ = 0.1, 0.2, 0.5, 1.0 are considered. Figure 1 shows
the four true piecewise linear trends and observations whose error terms ε follow standard normal
distributions.

4.1. Biasedness of the `1-trend filtering

Under the above assumptions, we illustrate the biasedness of the `1-trend filtering for scenario 1. For
practical applications, the solution path of the `1-trend filtering can be found by generalized lasso
algorithm (Tibshirani and Taylor, 2011). The R-package “genlasso” provides functions implement-
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ing the generalized lasso algorithm. In this paper, we use the “trendfilter” function to obtain a
solution path of the `1-trend filtering.

In Figure 1, a sample observation from scenario 1 is displayed. For this sample, there is no true
change point set in the solution path of the `1-trend filtering and the minimal change points set which
contains the true change points, and the least change points can be found for the tuning parameter
λ = 24.978. The left panel of Figure 2 shows the estimated trend θ̂i obtained by the `1-trend filtering
and the right panel depicts the difference between the trend estimates θ̂i and the true trend θ∗i . As we
can see in the subfigures, there is systematic discrepancy, i.e., unignorable bias between the estimates
and the true trend level. The estimated trend tends to underestimate the local extremes.

We estimate average biases Ê(θ̂i) − θ∗i (i = 1, 2, . . . , n) of the `1-trend filtering numerically. We
generate R = 1000 random samples and find empirical expectations of the `1-trend filtered trend as

Ê
[
θ̂i (λ)

]
=

1
R

R∑
r=1

θ̂i,r (λ) ,

where θ̂i,r indicates the ith observation in the rth sample. Using this empirical expectation, we can
estimate the bias of the ith observation as Ê[θ̂i(λ)] − θ∗i . Note that the empirical expectation and the
estimated bias depend on the tuning parameter λ.

For the four scenarios and various λ levels, the estimated biases are displayed in Figure 3. The
horizontal axes indicate the indices of the observations while the vertical axes show the levels of
biases. Each subfigure contains four lines that exhibit the levels of biases for different values of the
tuning parameter, λ = 1, 10, 20, and 50.

All the subfigures show that there exist structural patterns of biases. We can see that biases tend to
exhibit sequentially increasing or decreasing patterns. In addition, absolute values of biases get larger
near the peaks and troughs of the true trends. Larger values of the tuning parameter λ give larger
biases in absolute values. When λ is as small as 1, the values of biases concentrate near zero, except
in the case of indices being near peaks and troughs, while larger values of λ lead to wider gaps from
the zero level. The noise level σ does not affect the patterns of biases much. However, for the higher
noise levels and smaller tuning parameter values, absolute values of biases are inclined to get larger,
especially near peaks and troughs.

4.2. Performance of the bias-reduced estimator

To examine the effectiveness of our proposed bias-reduction procedure numerically, we fit the bias-
reduced estimator θ̂BR

i (λ) on the randomly generated samples and evaluate empirical biases Ê[θ̂BR
i (λ)]−

θ∗i as in the previous subsection. And then, the absolute values of empirical biases of the two esti-
mators, the `1-trend filtering estimator θ̂L1(λ) and the proposed bias-reduced estimator θ̂BR(λ), are
averaged as

1
n

n∑
i=1

∣∣∣∣Ê [
θ̂i (λ)

]
− θ∗i

∣∣∣∣ . (4.1)

The values obtained by (4.1) are compared in Table 1 and Figure 4. In addition, the average mean
squared errors for the tuning parameter λ are evaluated as

1
nR

R∑
r=1

n∑
i=1

(
θ̂i,r(λ) − θ∗i

)2
,
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(a) Scenario 1, σ = 0.2
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(c) Scenario 2, σ = 0.2
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(d) Scenario 2, σ = 1
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(e) Scenario 3, σ = 0.2
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(f) Scenario 3, σ = 1
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(g) Scenario 4, σ = 0.2
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Figure 3: Empirical biases for εi ∼ N(0, σ2) where σ = 0.2 and 1 (black solid line: λ = 1, red dashed line:
λ = 10, green dotted line: λ = 20, blue dot-dash line: λ = 50).
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Table 1: Average absolute biases and MSEs of the `1-trend filtered (L1) and bias-reduced (BR) estimates

trend λ
σ = 0.1 σ = 0.2 σ = 0.5 σ = 1.0

BR L1 BR L1 BR L1 BR L1

bias

scenario 1

1 0.010 0.007 0.014 0.010 0.028 0.018 0.041 0.027
10 0.007 0.048 0.024 0.047 0.068 0.048 0.106 0.066
20 0.002 0.096 0.013 0.096 0.067 0.094 0.138 0.095
50 0.001 0.240 0.003 0.240 0.034 0.240 0.124 0.237
opt 0.000 0.185 0.001 0.371 0.002 0.927 0.004 1.600

scenario 2

1 0.013 0.013 0.028 0.018 0.047 0.035 0.066 0.051
10 0.002 0.144 0.009 0.143 0.046 0.138 0.131 0.127
20 0.002 0.289 0.004 0.288 0.025 0.285 0.092 0.276
50 0.001 0.722 0.003 0.722 0.015 0.720 0.039 0.716
opt 0.002 0.066 0.004 0.142 0.009 0.360 0.018 0.574

scenario 3

1 0.015 0.027 0.037 0.026 0.069 0.045 0.093 0.078
10 0.002 0.283 0.008 0.282 0.039 0.280 0.149 0.273
20 0.002 0.565 0.005 0.565 0.022 0.565 0.076 0.561
50 0.001 1.412 0.003 1.413 0.054 1.412 0.127 1.410
opt 0.004 0.187 0.007 0.358 0.018 0.656 0.055 0.838

scenario 4

1 0.012 0.046 0.034 0.044 0.083 0.048 0.123 0.088
10 0.001 0.473 0.004 0.472 0.026 0.469 0.108 0.460
20 0.001 0.946 0.002 0.946 0.020 0.944 0.074 0.938
50 2.499 2.273 2.222 2.272 1.771 2.266 1.452 2.244
opt 0.003 0.171 0.007 0.343 0.019 0.662 0.049 0.730

MSE

scenario 1

1 0.120 0.054 0.653 0.254 5.764 2.190 31.887 11.756
10 0.064 0.190 0.330 0.316 2.446 1.332 12.130 5.361
20 0.062 0.647 0.255 0.760 2.197 1.667 9.499 5.262
50 0.051 3.869 0.241 3.967 1.591 4.747 8.033 7.861
opt 0.025 0.101 0.629 2.855 4.553 18.212 113.824 309.688

scenario 2

1 0.163 0.089 0.821 0.344 7.049 2.569 33.083 12.624
10 0.153 1.627 0.549 1.822 3.484 3.232 15.844 8.602
20 0.165 6.304 0.613 6.506 3.296 7.872 13.290 12.663
50 0.167 39.014 0.669 39.240 4.320 40.528 13.236 44.719
opt 0.153 0.612 3.775 17.874 0.597 2.387 14.136 36.450

scenario 3

1 0.212 0.133 1.060 0.425 8.525 2.995 37.348 13.915
10 0.162 5.548 0.668 5.731 4.068 7.190 20.541 13.045
20 0.173 22.027 0.649 22.192 4.190 23.503 16.338 28.582
50 0.184 137.456 0.793 137.554 5.287 138.528 16.810 141.751
opt 0.151 0.604 3.769 17.614 4.404 14.793 40.825 70.578

scenario 4

1 0.219 0.238 1.048 0.552 8.253 3.299 42.864 14.546
10 0.168 15.813 0.672 15.965 4.614 17.425 20.388 23.408
20 0.171 63.187 0.672 63.251 4.765 64.360 18.580 68.611
50 503.977 354.523 401.807 354.500 323.822 354.203 268.787 350.345
opt 0.177 0.707 4.391 22.252 3.002 11.823 39.030 60.301

* opt : optimal λ for each repetition.

and compared in Table 1 and Figure 5.
We can see that, in general, large tuning parameter values lead to large biases for the `1-trend

filtering estimator. For all the four noise levels, σ = 0.1, 0.2, 0.5 and 1.0, θ̂L1(λ) show that the absolute
value of bias increases in λ. On the contrary, the absolute values of bias of θ̂BR(λ) do not increase in
λ unless the value of λ gets large enough. However, for large values of λ, some true change points are
not identified and a large bias can be induced for θ̂BR(λ) due to the missing true change points.

For all the combinations of the four scenarios and noise levels (σ = 0.1, 0.2, 0.5, 1.0), the bias-
reduced estimator θ̂BR(λ) shows smaller biases for moderate values of tuning parameter λ. However,
for smaller values of λ, θ̂L1(λ) and θ̂BR(λ) give similar magnitudes of biases. In addition, for scenario
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(a) Scenario 1, σ = 0.2
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(b) Scenario 1, σ = 1
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(c) Scenario 2, σ = 0.2
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(d) Scenario 2, σ = 1
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(e) Scenario 3, σ = 0.2
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(f) Scenario 3, σ = 1
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(g) Scenario 4, σ = 0.2
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(h) Scenario 4, σ = 1

Figure 4: Empirical biases as a function of λ for εi ∼ N(0, σ2) where σ = 0.2 and 1 (red solid line: bias-reduced
estimator, blue dashed line: `1-trend filtered estimates).
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(a) Scenario 1, σ = 0.2
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(b) Scenario 1, σ = 1
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(c) Scenario 2, σ = 0.2
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(d) Scenario 2, σ = 1
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(e) Scenario 3, σ = 0.2
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(f) Scenario 3, σ = 1

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0

λ

ab
sb

ia
s[

, 8
 *

 (
tt 

−
 1

) 
+

 2
 *

 (
sg

 −
 1

) 
+

 1
:2

]

(g) Scenario 4, σ = 0.2
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(h) Scenario 4, σ = 1

Figure 5: Empirical MSE as a function of λ for εi ∼ N(0, σ2) where σ = 0.2 and 1 (red solid line: bias-reduced
estimator, blue dashed line: `1-trend filtered estimates).
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4 which contains more change points than the other scenarios, θ̂BR(λ) gives comparable bias levels to
θ̂L1(λ) for large tuning parameter values. For the optimal values of the tuning parameter λ, average
absolute biases of the bias-reduced estimator are smaller than those of the `1-trend filtered estimator.

In Table 1, we find that the empirical biases of θ̂L1(λ) are not influenced by the noise level except
in the case of small and optimal tuning parameter values. However, for most cases, biases of θ̂BR(λ)
tend to increase as the noise level σ gets larger. We can conclude that although the bias-reduced
estimator θ̂BR(λ) is less biased, it is not entirely bias-free. One of the possible sources of bias of the
estimator θ̂BR(λ) is the restriction that the estimator should be connected at each change point.

MSE shows patterns similar to that of bias. However, contrary to the bias patterns, in some cases,
for example under the combination of σ = 0.2 and λ = 10 in scenario 1, MSE of the bias-reduced
estimator is larger than that of the conventional `1-trend filter. For optimal tuning parameters, MSEs of
the bias-reduced estimators are consistently better than those of the `1-trend filters for all the scenarios
and noise levels.

5. Conclusion and discussion

The `1-trend filtering can be considered as an extension of the fused lasso (Tibshirani et al., 2005)
which is used for the estimating piecewise constant mean models. Although the piecewise linear trend
level and sparse change points set can be found at the same time by the `1-trend filtering, the resulting
estimates are biased. In this paper, we showed the biasedness of the `1-trend filtered estimates and
proposed a bias-reduced procedure based on the change points set of the `1-trend filtered estimates.
The proposed procedure can be easily optimized and we found that the proposed estimator has smaller
bias than the original `1-trend filtering estimator.

The proposed bias reduction method is based on the least squares methods while requiring the
estimated line segments to be connected at change points. Thus, as long as the `1-trend filtering is
valid for the irregularly-spaced data, the proposed method can also be applied. The original paper
on the `1-trend filtering (Kim et al., 2009) assumed that the explanatory variables are evenly spaced.
However, with an adjusted difference operator, the `1-trend filtering can be extended to arbitrarily
spaced data (Ramdas and Tibshirani, 2016). Thus, we can expect that the proposed bias reduction
procedure can also be applied to arbitrarily spaced observations.
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