• 제목/요약/키워드: Hochschild cohomology

검색결과 4건 처리시간 0.015초

α-TYPE HOCHSCHILD COHOMOLOGY OF HOM-ASSOCIATIVE ALGEBRAS AND BIALGEBRAS

  • Hurle, Benedikt;Makhlouf, Abdenacer
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1655-1687
    • /
    • 2019
  • In this paper we define a new type of cohomology for multiplicative Hom-associative algebras, which generalizes Hom-type Hochschild cohomology and fits with deformations of Hom-associative algebras including the deformation of the structure map ${\alpha}$. Moreover, we provide various observations and similarly a new type cohomology of Hom-bialgebras extending the Gerstenhaber-Schack cohomology for Hom-bialgebras and fitting with formal deformations including deformations of the structure map.

(CO)HOMOLOGY OF A GENERALIZED MATRIX BANACH ALGEBRA

  • M. Akbari;F. Habibian
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제30권1호
    • /
    • pp.15-24
    • /
    • 2023
  • In this paper, we show that bounded Hochschild homology and cohomology of associated matrix Banach algebra 𝔊(𝔄, R, S, 𝔅) to a Morita context 𝔐(𝔄, R, S, 𝔅, { }, [ ]) are isomorphic to those of the Banach algebra 𝔄. Consequently, we indicate that the n-amenability and simplicial triviality of 𝔊(𝔄, R, S, 𝔅) are equivalent to the n-amenability and simplicial triviality of 𝔄.

Ternary Distributive Structures and Quandles

  • Elhamdadi, Mohamed;Green, Matthew;Makhlouf, Abdenacer
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.1-27
    • /
    • 2016
  • We introduce a notion of ternary distributive algebraic structure, give examples, and relate it to the notion of a quandle. Classification is given for low order structures of this type. Constructions of such structures from 3-Lie algebras are provided. We also describe ternary distributive algebraic structures coming from groups and give examples from vector spaces whose bases are elements of a finite ternary distributive set. We introduce a cohomology theory that is analogous to Hochschild cohomology and relate it to a formal deformation theory of these structures.