• Title/Summary/Keyword: HoMnO3

Search Result 107, Processing Time 0.024 seconds

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

The Properties of the Several Metal Oxides in the Water-splitting for H2 Production (물 분해 수소제조를 위한 금속산화물들의 반응특성)

  • Son, Hyun-Myung;Park, Chu-Sik;Lee, Sang-Ho;Hwang, Gab-Jin;Kim, Jong-Won;Lee, Jin-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.268-275
    • /
    • 2003
  • The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

Electrochemical Properties of Cu Current Collector with Li0.5La0.5TiO3 or Si Thin Film as a Li Free Anode (Li0.5La0.5TiO3와 Si박막을 갖는 구리 집전체의 Li free 음극으로써의 전기화학적 특성)

  • Lee Jae-Jun;Kim Soo-Ho;Lee Jong-Min;Yoon Young-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • Electrochemical properties of Cu foil current collector with a $Li_{0.5}La_{0.5}TiO_3$ Cu a Si thin film deposited by r.f sputtering as an anode for Li free battery were evaluated. The Cu foil current collectors were lied in and out of plasma during sputtering process. The X-ray diffraction results indicated that the as-deposited Si and $Li_{0.5}La_{0.5}TiO_3$ thin films in and out of plasma did not show any crystalline difference. The $Li_{0.5}La_{0.5}TiO_3$ film in plasma and Si film out of plasma showed better cyclability since crystalline $Li_{0.5}La_{0.5}TiO_3$ has much higher ionic conductivity and crystalline Si film is much sensitive far volume change during charge-discharge process. These results suggested that the deposition of amorphous Si on Cu foil current collector is much better for fabrication of Li free battery and it can be useful for the unique battery with a cycling number constraint of below 10.

The Effect of Rare-Earth Additives on Dielectric Properties of X7R MLCC Composition (X7R용 적층 칩 세라믹 캐패시터 조성의 희토류 첨가에 따른 유전 특성)

  • 이석원;윤중락
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1080-1086
    • /
    • 2003
  • Effects of E$_2$O$_3$. HO$_2$O$_3$ and Dy$_2$O$_3$ addition on dielectric properties of non-reducible BaTiO$_3$ based X7R dielectrics with Ni electrode have been studied in a reduced atmosphere. As the content of rare-earth with E$_2$O$_3$. HO$_2$O$_3$, Dy$_2$O$_3$ was less than 3wt%, The TCC(Temperature Capacitance Change) and insulation resistance characteristics were improved by compensate the oxygen vacancies due to occupy either the Ba or Ti site. We developed the composition of X7R (EIA standard) for higher capacitance MLCC which had high reliability electric properties by the addition of Er ion into BaTiO$_3$ + MgO + Y2O$_3$ + MnO + (Ba$\sub$0.4/Ca$\sub$0.6/)SiO$_3$ composition.

Experimental Investigation of Variable Emittance Material Based on (La, Sr)MnO3 ((La, Sr)MnO3을 이용한 가변 방사율 소재에 관한 연구)

  • Han, Sunwoo;Choi, Bongsu;Song, Tae-Ho;Kim, Sun Jin;Lee, Bong Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.583-590
    • /
    • 2013
  • Variable emittance radiators can be used in a thermal management system in space because their total emittance changes depending on the temperature of the system. When the temperature of the system decreased, the emittance also decreased so as to minimize the heat loss to the environment. In contrast, when the temperature of the system increased, the emittance also increased such that radiation cooling could occur. Thermochromic materials, whose emittance is a function of the temperature, are often used in variable emittance radiators because no additional parts are needed. In this study, we fabricated a variable-emittance coating by using a sol-gel method based on LSMO ($La_{1-x}Sr_xMnO_3$) and experimentally characterized the emittance change with respect to temperature. Furthermore, we also examined the stability of LSMO film in space environments by exposing it to extremely low pressure and temperature.

Characterization and Fabrication of La(Sr)Fe(Co)O3-δ Infiltrated Cathode Support-Type Solid Oxide Fuel Cells (La(Sr)Fe(Co)O3-δ 침지법을 이용한 양극 지지형 SOFC 제조 및 출력 특성)

  • Hwang, Kuk-Jin;Kim, Min Kyu;Kim, Hanbit;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.501-506
    • /
    • 2019
  • To overcome the limitations of the conventional Ni anode-supported SOFCs, various types of ceramic anodes have been studied. However, these ceramic anodes are difficult to commercialize because of their low cell performances and difficulty in manufacturing anode-support typed SOFCs. Therefore, in this study, to use these ceramic anodes and take advantage of anode-supported SOFC, which can minimize ohmic loss from the thin electrolyte, we fabricated cathode support-typed SOFC. The cathode-support of LSCF-YSZ was prepared by the acid treatment of conventional Ni-YSZ (Yttria-stabilized Zirconia) anode-support, followed by the infiltration of LSCF to YSZ scaffold. The composite of $La(Sr)Ti(Ni)O_3$ and $Ce(Mn,Fe)O_2$ was used as the ceramic anode. The fabricated cathode-supported button cell showed a relatively low power density of $0.207Wcm^{-2}$ at $850^{\circ}C$; however, it is expected to show better performance through the optimization of the infiltration rate and thickness of LSCF-YSZ cathode-support layer.

Study for Seperation Process of Copper from the Low-grade Copper Ore by Hydrometallrugical Process (저품위 동광으로부터 습식제련공정에 의한 구리의 분리 공정 연구)

  • Shin, Dong Ju;Joo, Sung-Ho;Lee, Dongseok;Jeon, Ho-Seok;Shin, Shun Myung
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.57-66
    • /
    • 2021
  • In this study, we attempted to separate and recover Cu from low-grade copper ore by a hydrometallurgical process. The leaching sample obtained after crushing and sieving by 0.355 mm of low-grade copper ore contained 1.5% Cu, 4.7% Fe, 1.0% Mn, and 0.3% Zn. The Cu in the oxide ore was very well leached into sulfuric acid and 97% Cu leaching efficiency was achieved at 80℃ and 3 M sulfuric acid (H2SO4). From the leaching solution, Cu was separated by solvent extraction from Fe, Mn, and Zn using LIX984N. The separation tendency between Cu and other metals was confirmed through the distribution ratio and separation factor. By plotting the McCabe-Thiele Diagram, the optimum condition for recovering Cu is 5 vol.% LIX984N, 2-stage counter-current solvent extraction, and an O/A ratio of 0.5. Using this method, 99% of the Cu was extracted and a CuSO4 solution was finally obtained that contained 1.6 g/L Cu after the stripping process using 2 M H2SO4.

Study for Manufacturing of Zinc Sulfate from Electric Arc Furnace Dust by Hydrometallrugical Process (제강분진으로부터 습식제련공정에 의한 황산아연의 제조 연구)

  • Dong Ju Shin;Sung-Ho Joo;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Herein, we selectively recovered Zn and produced ZnSO4 from electric arc furnace dust using a hydrometallurgical process. The analysis of the properties of the electric arc furnace dust revealed that the Fe content (9.9%) was relatively low while the Mn content (19%) was high as compared to the composition of general dust. Therefore, an appropriate hydrometallurgical process was designed based on the properties of the raw materials. In the leaching process involving the use of 1.6 M sulfuric acid and 20% solid-liquid ratio at 60℃ for 1 h, 85% of the Zn and Mn got dissolved while the Fe was not leached. To selectively recover Zn, a solvent extraction process using D2EHPA as the extractant was chosen, and 99% of the Zn was extracted using 0.8 M D2EHPA with 32% saponification and an O/A ratio of 2 using counter-current 3-stage extraction. Mn was entirely scrubbed with an aqueous sulfuric acid solution of pH 1.5. Finally, Zn was concentrated and stripped using 1.5 M sulfuric acid at an O/A ratio of 4 using counter-current 4-stage stripping. The stripping solution contained 40 g/L of Zn, and 99.9% of ZnSO4∙H2O was obtained by vacuum distillation.

Groundwater and Stream Water Acidification and Mixing with Seawater, and Origin of Liquefaction-Expelled Water in a Tertiary Formation in the Pohang Area (포항지역 제3기층내 지하수와 지표수의 산성화 및 해수혼합, 그리고 액상화 유출수 기원에 관한 연구)

  • Jeong, Chan Ho;Ou, Song Min;Lee, Yu Jin;Lee, Yong Cheon;Kim, Young Seog;Kang, Tae Seob
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.559-569
    • /
    • 2022
  • This study investigated the acidification and mixing with seawater of groundwater, stream water, and reservoir water in the Hunghae area of Pohang City, as well as the source of water expelled to the stream by liquefaction induced by the Pohang earthquake on 15 November 2017. Geologically, the area consists of Tertiary sedimentary rocks. We collected six samples of groundwater, five of reservoir water, four of stream water, two of liquefaction water, and one of seawater to analyze the chemical composition and stable isotopes (𝛿D and 𝛿18O). Gogkang Stream flows eastward through the central part of the study area into the East Sea. The groundwater and reservoir water in the lower part of the stream are acidic (pH < 4), have a Ca(Mg)-SO4 composition, and high concentrations of Al, Fe, and Mn, likely due to the oxidation of pyrite in Tertiary rocks. The groundwater in the upper part of the stream have a Ca(Na)-HCO3(Cl) composition, indicating the mixing of seawater with the stream water. The 𝛿D and 𝛿18O isotope data indicate the isotopic enrichment of reservoir water by evaporation. Based on the chemical and isotopic data, it is inferred that the two samples of liquefaction water originated from alluvium water in a transition zone with stream water, and from deep and shallow groundwaters that has been infiltrated by seawater, respectively.

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC) (고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링)

  • Han, Kyoung Ho;Jung, Jung Yul;Yoon, Do Young
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.