• 제목/요약/키워드: History of Multibody Dynamics

검색결과 10건 처리시간 0.023초

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

다물체동력학을 이용한 기계 부품의 피로수명 예측 기술 (Technology for Fatigue Life Prediction of Mechanical Components using Multibody Dynamics)

  • 한형석
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.47-55
    • /
    • 1997
  • Fatigue life prediction of mechanical components is necessary to develop new products, which is very expensive and time-consuming. This paper reviews technologies proposed for computation of dynamic stress in mechanical components. The methods based on multibody dynamics are considering more real operational conditions than other methods. The technology for fatigue life prediction without the prototype for experiment results in cost and time saving. This technology can be applied to design of various mechanical components like carbody.

  • PDF

A Time Integration Method for Analysis of Dynamic Systems Using Domain Decomposition Technique

  • Fujikawa Takeshi;Imanishi Etsujiro
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.429-436
    • /
    • 2005
  • This paper presents a precise and stable time integration method for dynamic analysis of vibration or multibody systems. A total system is divided into several subsystems and their responses are calculated separately, while the coupling effect is treated equivalently as constant force during time steps. By using iterative procedure to improve equivalent coupling forces, a precise and stable solution is obtained. Some examples such as a seismic response and multibody analyses were carried out to demonstrate its usefulness.

EFFECT OF THE FLEXIBILITY OF AUTOMOTIVE SUSPENSION COMPONENTS IN MULTIBODY DYNAMICS SIMULATIONS

  • Lim, J.Y.;Kang, W.J.;Kim, D.S.;Kim, G.H.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.745-752
    • /
    • 2007
  • In this study, the effects of flexible bodies in vehicle suspension components were investigated to enhance the accuracy of multibody dynamic simulation results. Front and rear suspension components were investigated. Subframes, a stabilizer bar, a tie rod, a front lower control arm, a front knuckle, and front struts were selected. Reverse engineering techniques were used to construct a virtual vehicle model. Hard points and inertia data of the components were measured with surface scanning equipment. The mechanical characteristics of bushings and dampers were obtained from experiments. Reaction forces calculated from the multibody dynamics simulations were compared with test results at the ball joint of the lower control arm in both time-history and range-pair counting plots. Simulation results showed that the flexibility of the strut component had considerable influence on the lateral reaction force. Among the suspension components, the flexibility of the sub-frame, steering knuckle and upper strut resulted in better correlations with test results while the other flexible bodies could be neglected.

탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석 (Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics)

  • 박광필;차주환;구남국;조아라;이규열
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1489-1495
    • /
    • 2012
  • 본 논문에서는 부유식 플랫폼의 동적 거동을 고려하여 해상 풍력 발전기 타워의 구조 해석을 수행하였다. 풍력 발전기는 플랫폼, 타워, 낫셀, 허브 그리고 3 개의 블레이드로 구성된다. 타워는 3 차원 빔 요소를 사용하여 탄성체로 모델링하여 탄성 다물체계 동역학을 기반으로 한 운동 방정식을 구성하였다. 회전하는 블레이드에는 블레이드 요소 운동량 이론에 따라 계산된 공기역학적 힘이 적용되었고, 부유식 플랫폼에는 유체정역학적 힘, 유체동역학적 힘 그리고 계류력이 적용되었다. 타워의 구조 동역학적 거동을 수치적으로 시뮬레이션하였다. 시뮬레이션 결과를 이용하여 굽힘 모멘트와 응력을 산출하고 허용치와 비교하였다.

도마뱀 로봇 설계를 위한 생체운동 모사 다물체 동역학 시뮬레이터 개발 (Development of Multi-Body Dynamics Simulator for Bio-Mimetic Motion in Lizard Robot Design)

  • 박용익;서봉철;김성수;신호철
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.585-592
    • /
    • 2014
  • 본 논문에서는 도마뱀 로봇 설계를 위한 생체운동 모사 다물체 동역학 시뮬레이터가 개발되었다. 시뮬레이터에 사용된 다물체-기구 동역학 모델은 상용 소프트웨어인 RecurDyn 에 쿠반에놀 도마뱀의 모션 캡쳐 데이터와 Micro-CT 데이터를 적용하여 생성되었다. 다양한 도마뱀의 보행 운동 특성 해석을 위해서 생체운동 시뮬레이터는 궤적 생성모듈, 역기구학 모듈, 역동역학 모듈로 구성된다. 궤적생성 모듈은 도마뱀의 속도에 따른 척추운동과 발 궤적을 생성한다. 또한, 도마뱀 로봇 설계를 위해서 역기구학을 통한 관절 각도 계산과 그를 통한 역동역학 해석으로 이동속도에 대한 요구 조인트 구동력을 생성한다.

엔진 실린더 내 물 유입이 커넥팅로드 조인트반력에 미치는 영향 (An Influence of Water Ingestion into Engine Cylinder on the Joint Reaction Force of the Connecting Rod)

  • 김형현;윤희석;서권희;문영득
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.79-84
    • /
    • 1999
  • This paper focus on investigating the influence of the amount of water ingestion and the engine speed on the joint reaction force of the connecting rod in engine. The connecting rod was modelled by MSC/PATRAN, the modal informations of it were obtained by the DMAP module in the MSC/NASTRAN, and the dynamic force history was computed through the flexible multibody dynamic simulation in DADS. To analyze the joint reaction force acting on the connecting rod, the 48 cases were investigated. The engine speed varies with 200, 700, 1600, 2400rpm and the volumetric ratio of water to the combustion chamber varies with 0, 10, 20, ..., 90, 95 and 97.5% . As the engine speed decreases and the amount of water ingestion increases, the joint reaction force increase. Especially when the amount of water ingestion exceeds the 70% of the volume of the combution chamber, the joint reaction force acting on the connecting rod is over the design strength.

  • PDF

안내궤도 차량 부품의 피로 수명 예측에 관한 연구 (A STUDY ON THE FATIGUE LIFE PREDICTION OF GUIDEWAY VEHICLE COMPONENTS)

  • 이수호;박태원;윤지원;전용호;정성필;박중경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.997-1002
    • /
    • 2007
  • A guideway vehicle is used in automobile, semiconductor and LCD manufacturing industries to transport products efficiently. Since the operating speed of the guideway vehicle should be increased for maximum productivity, the weight of the vehicle has to be reduced. This may cause parts in the system to fail before the life of the system. Therefore estimation of the fatigue life of the parts becomes an important problem. In this study, the fatigue life of the driving wheel in the guideway vehicle is estimated using a S-N curve. To obtain the fatigue life of a part, the S-N curve, load time history applied on a driving wheel and material property are required. The S-N curve of the driving wheel is obtained using the fatigue experiment on wheels. Load time history of the wheel is obtained from multibody dynamics analysis. To obtain the material properties of the driving wheel, which is composed of aluminum with urethane coating, a compression hardware testing has been done with the static analysis of the FE model. The fatigue life prediction using computational analysis model guarantees the safety of the vehicle at the design stage of the product.

  • PDF

차량 부품의 내구도 해석과 실험의 비교 (Durability Analysis and Experiments of a Vehicle Component)

  • 박동운;박수진;유완석
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.28-34
    • /
    • 2007
  • In design stage of vehicles, the application of virtual durability analysis techniques enables us to cut down the necessary time and cost to carry out various physical experiments. In this study, computer simulations of vehicle suspensions were carried out with DADS program including component flexibility, and the durability analysis of vehicle components was executed with MSC/Fatigue program using the load history obtained from vehicle dynamic simulation. Driving test of a vehicle was also carried out to obtain precise input data for the durability analysis, and the results of virtual durability analysis were compared to those of experiments.

모달 응력 회복법(Modal Stress Recovery)을 이용한 Torsion Beam Axle 내구해석 (Analysis of Durability of Torsion Beam Axle Using Modal Stress Recovery Method)

  • 고준복;임영훈;이동철
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1339-1344
    • /
    • 2010
  • 모달중첩법은 구조물의 진동특성을 고려하여 내구수명을 평가할 수 있는 내구해석 기법이다. 본 논문에서는 모달중첩법과 유사하면서도 다물체 동역학 해석시 모달좌표를 직접 계산하여 전체적인 해석시간을 줄일 수 있는 모달응력 회복법을 이용한 내구해석 기법의 타당성에 대하여 검토하였다. 이를 위해 자동차 부품 중 대표적으로 동특성을 고려해야 하는 토션빔 액슬에 대하여 모달응력 회복법을 이용한 내구해석 및 시험을 실시하였다. 해석결과는 시험결과와 취약위치, 내구수명 등이 양호한 일치 결과를 나타내었다. 따라서 모달응력 회복법을 이용한 내구해석 기법은 다양한 구조물의 동특성을 반영한 내구수명 평가에 적용될 수 있을 것이다.